

System and Application Technical Landscape

Version 36

Date: 18/05/2020

European Maritime Safety Agency System and Application Technical Landscape

Document History

Version Date Names Comments

36 18/05/2020 EMSA Published

European Maritime Safety Agency System and Application Technical Landscape

Table of Contents

1. Introduction and Objectives ... 7

2. System Landscape .. 8
2.1. High Level Network Schema .. 8
2.2. Data Links ... 8
2.3. Network Security ... 9
2.4. Proxy Policy .. 9
2.5. Network Load Balancing ... 10
2.6. High Level Virtual Infrastructure Schema ... 10
2.7. Virtual Infrastructure Services .. 11
2.8. Application Requirements For Virtual Infrastructure ... 11
2.9. Environments .. 11
2.10. Disaster Recovery .. 15

3. Application Landscape ... 20
3.1. Architecture Overview ... 20
3.2. Client Environment and Client Tier ... 21

3.2.1. Web Browser Environment .. 21
3.2.2. Client Application ... 22
3.2.3. External Systems ... 23

3.3. Application Environment ... 23
3.3.1. Application Server ... 23
3.3.2. EIS Tier .. 25

3.4. Security ... 26
3.5. Reporting Platform .. 26
3.6. Geographic Information System AND OGC (Open Geospatial Consortium) standards 27
3.7. Logging ... 27
3.8. Storing Times and Dates .. 28
3.9. Others ... 28

4. Service Oriented Architecture .. 30
4.1. Service Consumers .. 31
4.2. Shared Service Infrastructure ... 31

5. Software Versioning Scheme ... 32

6. Summary .. 33

European Maritime Safety Agency System and Application Technical Landscape

4

Acronyms

AJAX Asynchronous JavaScript and XML

BCF Business Continuity Facility

BMP Bean-Managed Persistence

CMP Container-Managed Persistence

DAO Data Access Object

DTO Data Transfer Object

DB Database

DC Data Centre

DHTML Dynamic HTML

DMZ Demilitarized zone

DNS Domain Name System

EIS Enterprise Information System

EJB Enterprise Java Bean

EMSA European Maritime Safety Agency

ESB Enterprise Service Bus

FTP File Transfer Protocol

GIS Geographic Information System

GUI Graphical user interface

HA High Availability

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

IPSEC Internet Protocol Security

ISP Internet Service Provider

JCA JAVA EE Connector Architecture

JDBC Java Database Connectivity

JDK Java Development Kit

JEE Java Enterprise Edition

JMS Java Message Service

JSF Java Server Faces

JSP Java Server Pages

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

Mbps Megabit per second

MOM Message Oriented Middleware

NAT Network Address Translation

OAM Oracle Access Management

European Maritime Safety Agency System and Application Technical Landscape

OIM Oracle Identitiy Management

OES Oracle Entitlement Server

OS Operating System

OSB Oracle Service Bus

OWASP Open Web Application Security Project

POJO Plain Old Java Objects

R. Proxy Reverse Proxy

RAC Real Application Clusters

REST Representational State Transfer

RIA Rich Internet Applications

RMI Remote Method of Invocation

SAN Storage Area Network

SANS SysAdmin, Audit, Network, Security Institute

sFTP Secure File Transfer Protocol

SMTP Simple Mail Transfer Protocol

SRM Site Recovery Manager

SOA Service Oriented Architecture

SSL Secure Socket Layer

TB Tera Bytes (i.e. 1012 bytes or 1 million mega bytes)

UDDI Universal Description Discovery and Integration

VLAN Virtual Local Area Network

VM Virtual Machine

WLI WebLogic Integrator

WLS WebLogic Server

XHTML Extensible Hypertext Mark-up Language

XWS WS Security implementation from Sun Microsystems

European Maritime Safety Agency System and Application Technical Landscape

6

List of Annexes

Annex 1 “IAM Guide_abridged”

Annex 2 “EMSA secure development requirements v01”

Annex 3 “EMSA secure development recommendation guide v01”

Annex 4 “EMSA_JASPER_Technical_Document”

Annex 5 “EMSA SOA Guidelines & Rules”

European Maritime Safety Agency System and Application Technical Landscape

7

1. Introduction and Objectives

This document describes EMSA System and Application landscape. Its main
objective is to document the technical solutions used by EMSA at System level
and to provide directions on options and preferable technologies to be
considered at Application Level.

Although the System and Application Landscape described in this document are
EMSA guiding lines, this does not mean that no deviations are allowed.
Exceptions can be proposed and they will be considered on a case by case
basis; if it is found that is the best technical implementation for the requirement or
there is no other way of doing it, this exception will be accepted.
Also suggestions for innovation are welcome and if they bring added value to the
landscape, they will be included.

The document is organized in several chapters:

• Chapter 1: Introduction and Objectives.

• Chapter 2: Describes the System Landscape and the Technical solutions
implements at systems and network levels.

• Chapter 3: Describes the Application Landscape and preferable options to
be used at the Application level.

• Chapter 4: Describes the conceptual Service Oriented Architecture (SOA)
to which the applications should comply

• Chapter 5: Describes the software versioning scheme

• Chapter 6: A summary of the Software versions

European Maritime Safety Agency System and Application Technical Landscape

8

2. System Landscape

2.1. High Level Network Schema

EMSA Primary site

High level network schema

Figure 1 - Primary site. High level network schema

2.2. Data Links

Data Links

• 2 Internet ISP

 - active/active using BGP

 - BGP autonomous system and routing fully managed by EMSA

 - 100 Mbps each

 - 256 Provided independent IP addresses

• 1 sTESTA link

 - EU private network

 - 2 Mbps

• 1 GEANT link

 - Reserved to the CleanSeaNet project for high speed image transfer

 - 1 Gbps

European Maritime Safety Agency System and Application Technical Landscape

9

2.3. Network Security

Two layers of firewall protection:

• Checkpoint R75.40 2-nodes clusters;

• Cisco ASA;

Reverse proxies for incoming connections (currently handling the following
protocols: HTTP, HTTPS and SFTP). The network is segmented using VLAN’s.

DMZs

•DMZ-1: reverse proxies, DNS servers, other services exposed to Internet

•DMZ-2: application servers and database servers (Front/Back End VLANs)

Monitoring of security events is currently achieved through a SIEM (Security
Information Event Management) system including Suricata, Splunk, F5 ASM
module on top of EMSA F5 reverse proxy.

2.4. Proxy Policy

The following rules should be followed:

• Accessing EMSA web applications should be always through HTTPS;

• Reverse proxies are used for all incoming connections from outside networks
(Internet and sTESTA);

• All incoming connections shall pass through our reverse proxies;

• All incoming SSL connections are terminated in the reverse proxies;

• Proxies are always responsible for the SSL encryption and decryption;

• Proxies are always responsible for creation of the SSL connections;

• 1-way SSL is used for human to system interfaces while 2-way SSL should be
used for system to system interfaces;

• All SSL outgoing connections shall use the proxy. Any outgoing SSL connection
shall be initiated as plain HTTP by the applications to the proxy, where the SSL
will be initiated for the outgoing SSL connection. The protocol used to request
the proxy the creation of an outgoing HTTPS connection, involve the usage of
an EMSA URL naming convention (<standard_URL>.f5 URL’s) and some F5
configurations.

European Maritime Safety Agency System and Application Technical Landscape

10

Figure 2: Proxy policy

Proxy Devices

• 2 x F5 Big IP v5000 Series

2.5. Network Load Balancing

The F5 appliances form a redundant cluster that can perform load balancing for
web applications in any VLAN on EMSA network. The design of any new system
or application should preferably implement load balancing with node fail detection
on this equipment.

2.6. High Level Virtual Infrastructure Schema

Figure 3 - High Level infrastructure

European Maritime Safety Agency System and Application Technical Landscape

11

2.7. Virtual Infrastructure Services

The following services are offered to VMs and application environments:

• Basic monitoring with Nagios;

• Performance monitoring with vCenter Operations;

• VM-level backup with Networker or Netapp SnapMgr for Virtual Infrastructure.
Exceptionally also Networker agent-based backup can be implemented.

• Deployment of a VM or environment1;

• Cloning of a VM or environment;

• Snapshotting of a VM or environment2;

• Exporting as OVF a VM or environment;

• Hardware resource allocation changes3;

• Upgrade of VMware tools and virtual hardware;

• Troubleshooting.

2.8. Application Requirements For Virtual Infrastructure

Applications and systems hosted in the EMSA Virtual Datacentre must respect
the following requirements:

• Base OS must be chosen out of the current EMSA template catalogue4;

• Compatibility with the latest VMware virtual hardware specifications (currently
version 8);

• Hardware provisioning done according to a principle of fit-for-purpose;

• Compatibility with vMotion.

2.9. Environments

EMSA has defined 6 possible different types of environments for the Maritime
Applications. The following picture presents an overview of them.

1 Subject to being included in the EMSA Template catalogue, currently including:

- Linux Red Hat Enterprise Server or CentOS in version 7;

- As above, with WebLogic or with Oracle DBMS;

- Latest Microsoft Windows servers.
2 Subject to the following policy: the snapshot must be rolled back, or removed, in one week time to avoid performance penalties;
3 Subject to the following policy: CPU, Memory, disk and network for any VM should be fit for purpose, and oversized VMs should be
avoided to reduce contention issues and overhead. Granting more resources is subject to a trend analysis of the use of current
resources also looking at vCenter Operations performance indicators, and takes into account its recommendation. VMs oversized
are reported on a regular basis and are subject to downsizing.
4 See note 1 on the previous page.

European Maritime Safety Agency System and Application Technical Landscape

12

Figure 4: Types of Environments

The following figure shows detailed information related to each type of
environment.

Figure 5: Characteristics per Type of Environments

European Maritime Safety Agency System and Application Technical Landscape

13

The basic infrastructure that supports the environments is as follows:

Environments

• Production

• Training: ideally 50% of the production capacity

• Pilot Production: ideally 50% of the production capacity

• Pre-Production: ideally 50% of the production capacity

• Test/Quality: ideally 25% of the production capacity

Server Infrastructure

• EMSA Datacenter is fully virtualised with VMWare technologies

• Those include:

 - VMware ESXi VSphere 5

 - VMware HA, DRS and Failover

High availability technologies

• Service fail-over: Weblogic Active-Active, Oracle EXADATA

• Server fail-over: VMware FailOver and VMware HA

• Site fail-over: VMWare Site Recovery Manager;

• Data replication: Asynchronous data replication via FCIP; backup storing off-site

Service Clustering

• Weblogic Active/Active clustering

• Oracle EXADATA

SAN Storage

• Brocade fabric based on Sanswitch DS5300

• EMC Clariion CX4-240

• Netapp filer FAS3240 (only CIFS/NFSv3)

Critical applications and services must be mandatorily designed following High
availability techniques (e.g. clustering) without any Single Point of Failure.

Environment Test / Test Pilot Pre-Production Training Pilot Production Production

Purpose This environment

allows software

contractors to

perform testing

and integration of

their applications

in the EMSA

environment.

This environment

offers a chance for

EMSA application

users to review

and test

applications in

development or

having past SAT.

This environment

is used to perform

training sessions

with the end-users

and MS

commissioning

tests.

This environment

is used to

implement new

applications to

validate new

concepts before

implementing a

full-production

system.

Shall only be

provided for

applications

whose deliveries

have been

formally accepted.

When an

application is no

longer in use, the

application owner

shall inform the

ICT team of this

change in status.

European Maritime Safety Agency System and Application Technical Landscape

14

Infrastructure

performance &

scaling

Equivalent to 25%

of production

capacity

Equivalent to 50%

of production

capacity

Equivalent to 50%

of production

capacity

Equivalent to 50%

of production

capacity

Responsibility and

installation

In test

environment the

contractor will

have the

necessary

privileges (limited

to areas directly

related to the

development) in

order to be able

deploy the

application under

development

without help from

ICT teams. On

request, ICT may

make available

staff to support the

contractor.

The environment

shall also be used

to test installation

procedures.

Before any

applications are

installed or before

configuration

changes, data

fixes, etc are

performed, the

contractor will

deliver to EMSA

all source code,

installation scripts,

installation

procedures,

release notes, etc,

as described in

the release

management

procedure. ICT

will be responsible

for installation and

therefore the

contractor or

EMSA project

officer will need to

arrange with ICT,

sufficiently

beforehand, a

date for

installation.

In training

environment the

Operational Units

will have the

necessary

privileges (limited

to areas directly

related to the

development) in

order to be able

deploy the

application under

development

without help from

ICT staff. On

request ICT may

make available

staff to support the

contractor.

In Pilot Production

environment the

Operational Units

will have the

necessary

privileges (limited

to areas directly

related to the

development) in

order to be able

deploy the

application under

development

without help from

ICT staff. On

request ICT may

make available

staff to support the

contractor.

All software or

scripts being run

in the production

environment shall

first be installed in

pre-production

environment. Both

EMSA business

responsible and

EMSA IT

responsible shall

have formally

accepted the

software in

accordance with

Software Release

Management

Procedure.

Installation and

maintenance will

be performed

solely by ICT or its

contractors.

European Maritime Safety Agency System and Application Technical Landscape

15

2.10. Disaster Recovery

EMSA’s Business Continuity Facility (BCF) is hosted in the premises of a
commercial hosting provider. The BCF is a fully equipped replica of the main site
in terms of servers, network equipment, internet connectivity, storage and
middleware, and as such it may function as either the main production site for an
application, or as back-up site. This choice may be made on a per application
basis and depends on the EMSA needs, the application’s replication design and
capabilities, and the desired SL.

Any new system or application must conform by design to one of the business
continuity approaches foreseen so far:

1) ON/OFF model:

The servers and services that constitute the system or application are
active and visible on the network only in the main site. They are kept in
sync in the secondary site with some middleware or low level replica
technology like Dataguard for backends, or virtual machine cloning or
storage array based replication for front ends. But the replicated systems
are always inactive on the secondary site in an off-state and not visible on
the network unless the recovery procedure is executed. Taking over in that
case means executing a procedure to stop the systems in the main site (if
possible), execute a last synchronisation (if possible), stop the
synchronisation flows, then restart the replicated systems in the secondary
site changing all the parameters that differ in the two sites like network
configuration, internal DNS entries, pointers to database or cartographic
servers or to any other horizontal service platform always available in both
sites like LDAP, Single Sign On, DNS etc…. Eventually, the external DNS
entry should be changed to point external Internet users to the public IP of
the system or application in the new site.
According to this model, it is still possible to have the same internal FQDN
for the application servers in both sites, as servers are active and visible
on the network only in one site at a time, and when taking over, the A
records of the internal DNS can be changed to reflect the different IP
address space in the new site.

2) ON/ON model:

The servers and services that constitute the system or application are
active and ready to take over at any time in both sites. Synchronisation rely
on the features of the application or middleware used rather than on a low-
level cloning and transferring of the virtual machines, offering either a fully
multi-master active/active approach like Active Directory, or some type of
distributed geo-cluster, or anyway an autonomous system which keeps
data and configuration in sync between the two legs in the two sites.
Taking over in that case is a simpler procedure like activating some built-in

European Maritime Safety Agency System and Application Technical Landscape

16

system or application feature to switch to the other site, possibly requiring
some internal and external DNS changes, or can be even fully transparent.

According to this model, different FQDNs and IPs for the application
servers in the two sites must be chosen, as servers are active and visible
on the network in both sites at any time.

Note: it is not accepted to design ON/ON systems where the virtual machines on
the two sides have the same internal DNS FQDN.

The ON/ON model, when supported by the application or middleware, might
guarantee faster and seamless fail-over procedure, hence it is the preferred
approach.

The following figure exemplifies how the interconnection of current EMSA’s
production environment with the BCF is envisaged and points to the use of
several replication/back-up systems at different levels of the infrastructure:

Figure 6: EMSA DC connection with BCF

European Maritime Safety Agency System and Application Technical Landscape

18

Key elements of the actual BCF architecture are:

1) the two sites are connected through an IPSEC tunnel over an high
performance link

2) the two sites use different private and public IP address ranges
3) the internal DNS zone emsa.local, containing server’s FQDN, is shared

between the two sites;
4) the external IP address space in each of the two sites is a different C-class

of Provider Independent IPs whose routing advertisements is managed
directly by EMSA routers

5) the external DNS zone “emsa.europa.eu” is unique across the sites, it is
delegated to EMSA, and it is kept in sync between the two sites with master-
slave DNS replication;

6) data and systems are kept in sync through either:
a. Oracle Dataguard for backend;
b. Storage array replication for most of the front end virtual machines;
c. Ad hoc application built-in replication technologies, like active

directory replication, or Microsoft continuous cluster replication for
Exchange and SQL.

d. Ad hoc scripts for data transfer.
7) Rerouting of Internet users to the BCF is done with DNS technologies

Applications development should always be BCF friendly by being compliant with
the following requirements:

• Application shall never use IPs in any configuration or dependency.

• All relevant configurations must be externalized from the application; this can
be achieved with properties files in the filesystem (never inside the application
war, ear or deployment directory) or using a well identified table in the database.

• Application shall use FQDN in their configurations or references to any
dependency.

• Bandwidth required for data and system alignment should be kept to a
manageable amount to allow continuous replication over a non-dedicated
medium bandwidth link. A bandwidth estimation for data synchronization
between EMSA DC and BCF, through Oracle Data Guard and other
technologies, shall be provided;

• A fail-over procedure to BCF shall be provided together with one to fail back to
EMSA;

• A list of all the application configurations and dependencies which need to be
resolved in the BCF and main production site for the application to run shall be
provided:
o Web services
o Data sources
o Other application(s)
o Security constraints
o Infrastructural services
o Etc…

European Maritime Safety Agency System and Application Technical Landscape

19

• Connections to other machines should always be configured by referring to the
machine name, never by referring to the IP address directly.

• For critical system, BCF certification is mandatory

European Maritime Safety Agency System and Application Technical Landscape

20

3. Application Landscape

Figure 7: Application landscape

3.1. Architecture Overview

EMSA IT systems should follow state of the art JAVA PLATFORM,
ENTERPRISE EDITION n-tier architecture. Figure 7 represents the preferable
EMSA IT architecture where the major tiers are:

Client Environment

Client Tier:

Client Tier is a JEE application front-end that provides communication with human

users or with others external systems.

For details, refer to chapter3.2

Server Environment

Web Tier:

Web Tier connects user interface on a Client Tier with business logic on a Business

Tier.

For details, refer to chapter 3.3.1, (a)

Business Tier:

Business Tier provides transaction processing logic (business logic) and data

processing logic (data management). Business processes and business components

should not be implemented outside this tier.

E
IS

 T
ie

rOther Information

Systems

B
u

s
in

e
s

s
 T

ie
r

W
e

b
 T

ie
r

C
li
e

n
t

T
ie

r

Message Oriented

Middleware

Oracle 12c

Database

S
e

c
u

ri
ty

OS Server Platform - LINUX RedHat

Application Server

Web Container

Provided by JEE Server, or Tomcat

Java Server Pages, Java Server Faces , Servlets, Portlets

Web

Services

WebLogic Application Server (12.1.2), JBoss

EJB Container,

Provided by JEE Server

Session Beans, Message-Driven Beans

Entity Beans (CMP, BMP) Hibernate, iBatis, POJO

POJO

JDBC JCA JMS

Standard Classes

Hibernate, iBatis, POJO

POJO

OS Desktop Client System Platform – Windows, Linux

(X)HTML

+JavaScript

[SVG]

[RSS]

Web Browser Environment

IE (11), Firefox (45)

HTTP

HTTPS

Web Services

RMI

Client Application

Web Services

External Systems

S

C

W

B

E
Authentication and

Authorization

openLDAP

DB Custom schema

P
h

y
s
ic

a
l
a

n
d

 N
e

tw
o

rk
 S

e
c
u

ri
ty

L
o

g
ic

a
l
S

e
c
u

ri
ty

X

L
o

g
4

j

M
V

C

ESB

Oracle Service Bus 11g

JMS

European Maritime Safety Agency System and Application Technical Landscape

21

For details, refer to chapter 3.3.1, (b)

EIS Tier:

EIS (Enterprise Information System) Tier consists of all enterprise information systems,

such as databases or other information systems.

ESB and Message Oriented Middleware are also included in this tier.

For details, refer to chapter 3.3.2

Client Tier is the only tier of the Client Environment and it’s by definition a
distributed and separated tier.

Web Tier, Business Tier and EIS Tier are part of the Server Environment hosted
at EMSA; EIS Tier (and its components) is usually a separated tier implemented
on top of a separated server environment and depending on the complexity, the
system architect may decide between a complete distributed architecture where
all tiers are distributed in separated server environments or a mixed architecture
where some tiers may share one server environment.

Operation systems options for the different environments are:

Client Environment

• Windows 10

• LINUX distribution desktop

Server Environment

• LINUX Redhat server 7 (64 bits)

• Windows Server 2019

3.2. Client Environment and Client Tier

3.2.1. Web Browser Environment

The majority of EMSA applications are delivered to the final user via a browser
based interface. A Web UI's advantage is that no additional software needs to be
installed on client side and minimal demands are placed on the client platform.

Because a HTML Thin Client GUI is limited by markup language / JavaScript
capabilities, others resources can add to build Rich Clients providing better user
experience through the Web Browser. Applications must be 100% compatible
with, at least, the following browsers or higher versions:

Web Browsers

• Microsoft Edge (latest versions)

• Mozilla Firefox 70 and later

European Maritime Safety Agency System and Application Technical Landscape

22

HTML page serves as a host for Rich Clients built with different technologies:

Client Tier Technologies

• HTML 5

• Plain Javascript and Tag Libraries

• Single-Page Application, e.g. AngularJS, ExtJS,… (latest versions)

• WebGL

Technologies used to implement Rich Internet Applications in the Client Tier can
also have strong relationships with the technologies used in the Web Tier (e.g.
Tag Libraries) described in chapter 3.3.1.

Usage of Java Applets should be limited to very particular situations and the
decision to allow this will be taken on a case by case basis.

3.2.2. Client Application

Due to some business requirements (e.g. operation in disconnected mode,
access to the local file system, …), some applications may require a Fat Client.

In order to create a unified technology platform, and to support all operating
platforms in use at EMSA or EMSA clients, preference will be for using the Java
language.

A mechanism for deploying and updating the client application at the remote PC
will be needed (Java Webstart will be preferred). Dependencies on runtime
components not already part of standard EMSA PC configurations will be
regarded as negative.

Because EMSA needs to support other organisations within the Member States,
any application to be installed on a client will need to be cross-platform, covering
at least the platforms listed earlier in this document5.
Usually, a client application will need also to connect to the server side of the
system in order to perform business actions (e.g. data synchronization). Several
technologies can be used to address this client-server connection; please refer to
Annex 5 “EMSA SOA Guidelines & Rules” for details.

Communications to servers shall be done using web services, exceptions may be
granted on request. Exposed Web Services shall always be protected with
Authentication and Authorization. Important business data should always be
stored on servers managed by ICT, if this requirement cannot be met (due to
business requirements, impossibility to connect, …) a procedure for providing
data back-ups needs to be foreseen.

5 If the application is to be used only by EMSA this requirement can be reduced to supporting Windows 10. An application installer
compatible with EMSA’s MS System Center needs to be provided.

European Maritime Safety Agency System and Application Technical Landscape

23

In case development of a fat client is proposed, this needs to be discussed with
ICT and agreements on installation requirements, connection technology and
data back-up need to be reached before starting development.

Mobile application platforms

• iOS, latest versions

• Android, latest versions

Increasingly mobile devices are used for accessing web based information
systems. Where possible, in order to avoid creating multiple platform dependent
solutions, such developments should be based on simple website access, with
appropriate changes applied to the UI to take into account the smaller screen
size, reduced bandwidth and touch based controls used by mobile devices. In
cases where business requirements cannot be reached using a mobile optimised
website, at least the application platforms and version mentioned above need to
be supported.

3.2.3. External Systems

External systems will also act as clients to EMSA systems creating the need of
integrating different software systems used by different organizations (business
partners). The system integration helps to automate collaboration processes and
improve business performance. De-facto standard technologies should be used
to inter-connect external systems with EMSA systems; please refer to Annex 5
“EMSA SOA Guidelines & Rules” for details.

3.3. Application Environment

3.3.1. Application Server

EMSA architecture is based on the standard JEE version 7. The following
Application Servers should be used as the base Web and EJB containers:

Application Servers

• Weblogic Application Server (latest version)

• Wildfly/JBoss (latest version)

New development or ‘significant’6 changes to existing applications should always
target the latest version of the application server in use at EMSA. For existing
applications, EMSA will assess the desirability vs the risks of upgrading the
underlying application server on a case by case basis.

Simple applications, where distribution is not foreseen, the EJB container is not
needed; see below for details.

6 Significant shall be understood as any change resulting in a change of either major or minor versioning number (see further for a
description of the version numbering scheme in use at EMSA)

European Maritime Safety Agency System and Application Technical Landscape

24

(a) Web Tier

The delivery of Rich GUI based on Web Browsers is achieved by a set of
components located in this tier and in close relationship with the Client Tier.
Those components may vary depending on the technical solution adopted and
level of complexity required for the Rich GUI; major technologies are presented
in the next table:

Web Tier Technologies

• JSP – Java Server Pages

• JSF – Java Server Faces

• Portlets

• Rich server side components7

Portal technology

• Liferay Enterprise Edition

Simple applications, that only require a Web Container can use:

Web Container

• Tomcat (latest stable version)

Web Services are used to provide communication between loosely connected
system components and are the preferable mechanism to expose services to
external systems/applications. Several technologies could be adopted; please
refer to Annex 5 “EMSA SOA Guidelines & Rules” for details.

(b) Business Tier

System functionalities are always implemented in the Business Tier and several
technical options can be used to implement the Business components.
A software layer approach must be followed, implementing at least, two layers:

Business Layer: Responsible for the delivery of the business functionalities and
orchestration of the business processes

Data Access Layer: Responsible for isolation of data access and actions
executed over the persistent data storage (typically a relational database).
Usually, Data Access Object (DAO) design pattern is mapped into this layer.

To support data transfer between layers and even between tiers a complete set
of objects according to the Data Transfer Objects design pattern must be
implemented.

7 No preferable solution yet. On a case by case, other technologies that enable Rich Web base clients can be used

European Maritime Safety Agency System and Application Technical Landscape

25

For simple applications where an EJB container is not required:

Business Layer technologies

• POJO (Plain Old Java Objects)

Data Access Layer technologies

• JPA

• JDBC

• Hibernate

• springJDBC

For systems requiring an EJB container (that will be provided by the selected
Application Server):

Business Layer technologies

• Session EJBs

• Message Driven EJBs

• POJO (Plain Old Java Objects)

Data Access Layer technologies

• Hibernate

• springJDBC

• Entity EJBs

3.3.2. EIS Tier
(a) Database

EMSA stores data in relational databases.

Relational Database Management System

• ORACLE 12c

• PostgreSQL 12

New development or significant upgrades should enable the application to use
the latest RDBMS version in use at EMSA.

(b) Message Oriented Middleware

To provide messaging services for integrated systems or asynchronous
operations, EMSA relies on a Message-Oriented Middleware that increases the
interoperability, portability, and flexibility by isolating the exposed services from
the internal implementation and allowing distribution over multiple platforms
(among other advantages).

Asynchronous messaging is the preferred method for exchanging data between
internal applications. JMS will be the preferred manner for consuming and
producing messages. The use of asynchronous message should enable better
decoupling between applications (compared to web services), allow a more up-
to-date system state (compared to batch processing), increased scalability (due
to MOM underpinnings) and improved configurability and oversight of the system

European Maritime Safety Agency System and Application Technical Landscape

26

integrations (through use of the ESB). Asynchronous messaging over JMS will
also be the preferred method for request/reply messaging paradigm.

Message Oriented Middleware

• WebLogic JMS

(c) Other Information Systems

Any other Information Systems inside EMSA is considered to be in the EIS tier.
Integration can be done using several techniques; preferable methods of
integration are:

Internal systems integration technologies

• JCA – JAVA EE Connector Architecture

• Web Services; please refer to Annex 5 “EMSA SOA Guidelines & Rules” for details.

Asynchronous communication (based on call backs) should be used where
possible.

Compared to the JMS based integration described above, more effort will be
required to ensure the consumers / producers deal with service unavailability,
scalability or reliability issues, therefore integration using asynchronous JMS is
encouraged.

(d) Authentication and Authorization

EMSA owns a centralized system for Identity and Access Management; for
details on this system, please refer to Annex 1, “IAM Guide_abridged”.

3.4. Security

Implementation of EMSA applications shall follow and be compliant with the best
practices for secure programming. The standards detailed in Annex 2, “EMSA
secure development requirements v01” are mandatory and recommendations
described in Annex 3, “EMSA secure development recommendation guide v01”
must always be taken into consideration

All applications shall be assessed against those recommendations and
standards. These security assessments will be conducted by EMSA together with
an independent external partner, at least once before entering PRODUCTION
and whenever there is a EMSA’s decision to carried out a new assessment.
Vulnerabilities found shall be addressed by the application implementing partner
in agreement with EMSA.

3.5. Reporting Platform

Reporting Platform

• JasperReports

• Jasper BI

European Maritime Safety Agency System and Application Technical Landscape

27

EMSA reporting platform is based on JASPER BI Enterprise Edittion; details on
this platform can be found in Annex 4, “EMSA_JASPER_Technical_Document”.

3.6. Geographic Information System AND OGC (Open Geospatial
Consortium) standards

EMSA Maritime Applications geospatial services are fully based on the OGC
(Open Geospatial Consortium) standards, which have become key standards in
use at EMSA. Some practical usage, but not limited, of these standards are:

• Electronic Nautical Charts:

EMSA is currently using an Electronic Nautical Charts distribution system for usage on the EMSA

Maritime Applications. This system is providing ENCs, using a standard WMS interface, that are used

as the base layer on the EMSA Maritime Applications.

• OGC standards used for vessel detection and correlation

EMSA is using OGC standards to provide Vessel Detection and Correlation services to other EU

agencies. The standards being used are WMS and WFS. It is also intended to use WPS to generate

VDS (Vessel Detection System) correlations.

• Creation of traffic density maps

EMSA is now using OGC standards (mainly WMS) to provide traffic density maps to end-users.

EMSA will develop further this functionality to include more detailed TDMs with a higher definition

than the current maps, on smaller areas), comparative maps (which show the differences between

two maps) and vector maps (which show individual ship routes in polylines).

The GIS technologies in use at EMSA are:

GIS Platform

• ESRI Arc GIS

• Jeppesen C-Map Professional +

• GeoServer

• Luciad

3.7. Logging

Log4J shall be the preferred library for generating application logs. All application
logs should use the same log message format, as described below:

<param name="ConversionPattern" value="%d{yyyy-MM-

dd/HH:mm:ss.SSS/zzz} %-5p [%-t] [%l] %x - %m%n" />

Mandatory fields and format:

• %d – date in the specified format

European Maritime Safety Agency System and Application Technical Landscape

28

• %-5p - Priority of the logging event.

• %m - application supplied message associated with the logging event.

• %-t - name of the thread that generated the logging event.

• %l - location information of the caller which generated the logging event.

• %x - NDC (nested diagnostic context) associated with the thread that

generated the logging event.

The following conversion patterns should be avoided as much as possible for
Production environments, due to increased processing needs:

• C

• F

• 1, L

• M

The logging level should be changeable without requiring a restart of either the
application or the application server. As for all configuration files, the log
configuration file must reside outside of the packaged application.

Definition and implementation of log rotation and clean-up rules/processes is
mandatory for every single logfile generated by the systems and its components.

EMSA makes use of Splunk for logging centralization and visualization.
Applications must make sure that the logging patterns used are compatible with
Splunk.

3.8. Storing Times and Dates

All EMSA servers, regardless of their function, shall use NTP to maintain
accurate and aligned system clocks.

In order to prevent mismatches between data stored in different applications, all
data shall in all cases be stored in Coordinated Universal Time (UTC). It is
important to note that UTC, as opposed to local time, does not change with a
change of seasons.

When a time is displayed to a user, used for triggering workflows or generating
reports, it shall be the responsibility of the application to convert, if so desired,
the stored UTC time to local time for the user. The final decision on if, or how the
conversion shall happen, depends on the business requirements and will be an
application decision. It is recommended for the user to be informed whether UTC
time, user local time or source local time is displayed.

3.9. Others

The following points are generic mandatory requirements that shall be respected:

• Root or rooted administration accounts shall not be used.

European Maritime Safety Agency System and Application Technical Landscape

29

• All system components shall be used by the same OS user.

• Software distribution cannot be done using rpm or any other solution that
requires root privileges.

• In case it is necessary to have authentication on middleware components
(e.g. application server, JMS) a dedicated user must be used. This user
cannot be administration user of the components.

• When using non-compiled languages (e.g. php, perl) the versions of these
languages shall be aligned with the version distributed bundled in OS
version.

• Configuration files shall not include passwords in clear text. Solution to cope
with this requirement may vary and must be agreed with EMSA.

If any deviation is foreseen, it shall be detailed and justified. EMSA has the last
word in the decision process.

European Maritime Safety Agency System and Application Technical Landscape

30

4. Service Oriented Architecture

EMSA applications should be compliant with the Enterprise Service Oriented
Architecture with the objective of providing business and data services to others
applications and being flexible and agile in order to easily adapt to change in
short time.

EMSA Service Oriented Architecture is supported by a state of the art Service
Oriented Infrastructure that follows the architectural best practices of the SOA
metamodel.

Figure 8: SOA architecture

The two major components supporting EMSA Service Oriented Architecture are:

EMSA SOA key components

• Liferay Portal, version 7.1 Enterprise Edition

• Oracle SOA Suite 12c

The fundamental building block of Service Oriented Architecture is a service. A
service is a component that can be interacted with through well-defined
interfaces or message exchanges. Services must be designed to perform simple,
granular functions with limited knowledge of how messages are passed to or
retrieved from and for flexibility, agility, availability and stability.

European Maritime Safety Agency System and Application Technical Landscape

31

EMSA principles of service orientation, which must be followed while designing
services, are:

1. Services are loosely coupled components
2. Services are independent components
3. Services are self-contained
4. Services boundaries are explicit
5. Services are autonomous
6. Services share schema and contract
7. Services are independent deployable (logical aggregation can be

considered)

Services designed based on these principles are much more likely to be reused
within EMSA growing SOA infrastructure.

Please refer also to Annex 5 “EMSA SOA Guidelines & Rules”.

4.1. Service Consumers

Service consumers or composite applications are the applications that are
developed to handle business actions or events initiated by business initiators.
Business event initiators are entities that initiate business actions or events
(either human users or other systems).

4.2. Shared Service Infrastructure

Shared service infrastructure defines the framework to shared services. It is
based on Validate, Enrich, Transform, Route, and Operate or invokes (VETRO)
patterns

Shared services are shared and reusable services that are used in service
orchestration while creating business processes. Examples of shared services
types are:

• Presentation services that present the data to the user.

• Business services that represent core business capabilities. Business
services can range from relatively simple to very complex cross-functional,
inter-enterprise business process.

• Data services that are entity services which provide access to enterprise
data. Simple data services have a Validate, Create, Retrieve, Update, and
Delete (CRUD) interface but more complex data services could be
responsible for data aggregation or data synchronization.

European Maritime Safety Agency System and Application Technical Landscape

32

5. Software Versioning Scheme

All applications being developed for or by EMSA shall use the following
versioning scheme:

• [major].[minor].[revision]<.internal number>

Follows a description of the fields:

• Major will start 0 and will be increased by 1 every time significant new
functionality is added to the application, or when significant changes to the
implementation and/or organisation of the code have happened, such as:

o When delivery of a new application or a major new version has been
accepted, the major number will be increased by 1, other version
numbers will be reset to 0;

o Development of the next major version starts by increasing major
version number by 1 and resetting all other version numbers to 0;

o The above rules mean that all even numbered versions (+0) will be
development releases for major new versions, whilst all odd
numbered versions will be stable, production releases. E.g. if a
software with version number 0.2.65 has been accepted for use in
production environment, its version number will be 1.0.0.
Development for the next major release will start at 2.0.0 and the
production accepted release of this will carry a 3.0.0 version;

• Minor will be increased by 1 whenever less important new functionality or
user interface changes are introduced;

• Revision will be increased by 1 whenever a new application version
containing only bug fixes is delivered for deployment in EMSA pre-
production environment;

• The internal number is an optional element that may be used by the
contractor.

European Maritime Safety Agency System and Application Technical Landscape

33

6. Summary

Minimum SW versions

SW or Technology SW Version Comment

Oracle WebLogic 12.2.1 Active / Active Weblogic clustering is foreseen for

critical applications

Wildfly 10.1

Tomcat 9.0

Oracle IdM Suite ORACLE IAM Suite 11gR3

 IAM 11.1.2.3.0

 SOA 11.1.1.9.0

Oracle Access Manager OAM suite 10gR3

 OAM 10.1.4.3.0

Oracle SOA Suite 12.2.1

Oracle OSB 12.2.1

openLDAP 2.4

Jasper BI

Jasper Reports

7.1

Liferay DXP 7.1

ORACLE EXADATA database 12.1.0.2

ORACLE standalone database 12.1.0.2 TEST environment only

PostgresQL 12

ESRI ARCGIS 10

Geoserver 2.14

LuciadLightspeed 2016.1.53

LuciadFusion 2016.1.53

LuciadRia 2017.1

Please note that, based on EMSA’s official patching policies, the mentioned
versions can be changed in specific cycles and without notice. Therefore, the
above versions shall be considered as the minimum versions and never as “the
only version”

Some additional information, can also be found below:

Area Description Technology SW Version Comment

Backup SW VMware VM backup;

Legato Networker

7.6 SP3

HW HP MSL8096 and

Dell PVT Tape

Libraries

N/A

Business

Continuity

HW/SW systems to

guarantee different

degrees of service

availability

Local scale: VMware

HA and FailOver

Geographial scale:

Asynchronous data

replication through

the Storage Array;

ESXi V 5

European Maritime Safety Agency System and Application Technical Landscape

34

VMWare Site

Recovery Manager;

Clustering Service fail-over Front-end: Weblogic

Active/Active

Back-end: Oracle

EXADATA

12c

12c

Data Links Internet connectivity 2 Internet circuits

Internet IP

connections

N/A Each link: 100 Mbps, 256 Provided

independent IP addresses

GIS ESRI ArcGIS

Geoserver,

10

2.14

HW Servers VM hardware VMware Hardware

revision 8 (vSphere

5)

 Only production database is not

virtualised and runs on blades as

well.

VM Host hardware HP Blade and DL

series servers

N/A

Monitoring

System

 Nagios N/A

Network Security Security DMZ Checkpoint blades R75.40 2 node clustered configuration with

Mobile Access VPN

Operating

Systems

 Linux and MS

Windows

RedHat

Enterprise Linux

7

Windows Server

2008

Proxy Security DMZ F5 Big IP v5000

series proxies

11.4.0 Clustered configuration with 2

nodes

SAN Storage Storage Area Network Brocade Fabric;

EMC Clariion Model

CX4-240;

Netapp FAS3240

Virtualisation VMWare vSphere 5

Electronica

Nautical Charts

 Jeppesen C-Map

Professional +

V360

For redundancy purposes: 2 nodes

load-balanced in the F5

IAM Guide

Identity and Access Management Guide

(Abridged Version)

European Maritime Safety Agency Identity and Access Management Guide

1

Document History

Title
Identity and Access Management Guide (abridged

version)

Version 2.3 from 18/05/2020

European Maritime Safety Agency Identity and Access Management Guide

2

Table of Contents

Definitions, acronyms and abbreviations.. 5

1. Introduction and objectives .. 6

2. EMSA IAM technical overview ... 8

3. Access Management .. 11

3.1. Protecting Applications .. 11

3.2. Authentication .. 11

3.3. Authorisation .. 11

3.4. Webgate .. 12

3.4.1. SAP Configurations ... 13
3.4.2. Common Configurations .. 14

3.5. Oracle Access Manager .. 14

3.5.1. Access Policies ... 14

3.6. RBAC Implementation in the EMSA Infrastructure ... 15

3.6.1. LDAP .. 15
3.6.2. Liferay Enterprise Portal .. 15

3.7. Deploying Applications with Single Sign-On .. 16

3.7.1. Portal integration ... 16
3.7.2. jPetStore ... 17

3.8. Logging out of Single Sign-On .. 19

3.8.1. Technical implementation of a global Logout .. 19

3.9. Password Management .. 19

3.9.1. Change Password / Lost Password Management ... 19

3.10. MAP Integration .. 20

3.10.1. MAP login Process ... 21
3.10.2. MAP Access Policies ... 21

3.11. JSON Login .. 21

3.11.1. User Authentication ... 22
3.11.2. User Authorization .. 22

4. Identity Management ... 23

4.1. EMSA Business View on Identity Management .. 23

4.1.1. Service ... 23
4.1.2. Profile ... 23
4.1.3. Role ... 23
4.1.4. Country/Institution ... 24
4.1.5. Organization .. 24
4.1.6. Operation .. 24

4.2. Security Model.. 24

4.2.1. Security Model Level Correspondence to Application Roles 25
4.2.2. Accumulation of Levels ... 25

4.3. Identity Management Functionalities ... 25

4.3.1. Reconciliation .. 26
4.3.2. Account Management ... 26
4.3.3. Provisioning ... 26
4.3.4. Other Administrative Functions .. 26

4.4. Identity Management Integrations .. 26

4.4.1. Provisioning Applications or “PUSH” Model ... 26

European Maritime Safety Agency Identity and Access Management Guide

3

4.4.2. User Information Web Service (or “PULL” Model).. 27
4.4.3. Accessing IdM Functionalities via direct URL .. 27

4.5. Staging Database Management console ... 28

ANNEX A – EMSA Customisations on OIM – Oracle Identity Management ... 30

ANNEX B – Statistical Information in Identity Management 32

ANNEX C – SOA Suite Processes ... 33

ANNEX D – Web Service Details ... 34

European Maritime Safety Agency Identity and Access Management Guide

4

Table of Figures

Figure 1: Context Diagram ... 8
Figure 2: Technical Components .. 9
Figure 3: Authorisation denied .. 12
Figure 4: WebGate Configuration Architecture ... 13
Figure 5: Integration Sequence Diagram .. 17
Figure 6: MAP integrated Login ... 21

European Maritime Safety Agency Identity and Access Management Guide

5

Definitions, acronyms and abbreviations

Definition Description

AccMng Access Management

AD Microsoft Active Directory

BCF Business Continuity Framework

CMC Common Management Console

Country/Institution Defines the Nationality of a User and the area of control of a National Administrator.

CSN2 Clean Sea Net 2 Maritime application – version 2

EMSA European Maritime Safety Agency

IAM Identity and Access Management

IdM Identity Management which comprises Access and User Identity Management

IdM V2 Identity and Access Management, version 2

IMDatE Integrated Maritime Data Environment Maritime application

JAAS Java Authentication and Authorization Service

LDAP Lightweight Directory Access Protocol

LRITDC Long-Range Identification and Tracking Data Centre Maritime application

JSON JavaScript Object Notation. Lightweight data-interchange format

MAP Maritime Application Portal (Liferay customisation of entry page to act as an “access point” for all of
EMSA’s Maritime Applications)

MarApps Abbreviated form of referring to EMSA Maritime Applications

MSS EMSA’s Maritime Support Services

OAM Oracle Access Management

OIM Oracle Identity Management

Operation Defines an Action that is available to a User.

Organization Defines the Organization a User belongs to and the area of control of a Local Administrator.

OSB Oracle Service Bus

OVD Oracle Virtual Directory

RAC Oracle Real time Application Cluster

REST Representational State Transfer. Web Services that conform to the REST architectural style

RuleCheck Application providing EU and International legislation regarding Port State Control

SAP Webgate Specific Access Point configuration

SEG SafeSeaNet Eco-system GUI

Service Represents a set of (one or more) Business Functions implemented by an application (MarApp).

SOA Service Oriented Architecture

SSN Safe Sea Net Maritime application

SSO Single Sign-On

STCW Standards of Training Certification and Watchkeeping Maritime application

THETIS The Hybrid European Targeting and Inspection System Maritime application

UMC User Management Console

WebGate Secured access entry point for applications

European Maritime Safety Agency Identity and Access Management Guide

6

1. Introduction and objectives

This document describes EMSA Access and Identity Management. Its main purpose is to

document the technical solutions used by EMSA to implement Access Control and User

Identity Management throughout EMSA systems and applications.

It should be noted that this is an abridged version of the original document

intended only for obtaining a high level perception of EMSA Access and Identity

Management.

During the past years, EMSA has developed a common infrastructure to provide Identity

and Access Management (IAM) services to the EMSA Maritime Applications.

IAM suggests that each user assume a unique digital identity across applications and

systems, which enables access control to be assigned and evaluated against this identity at

a central place as well as centralized management of user attributes. Thus, the IAM concept

encompasses two major areas:

• Access Management managing authentication and authorization to resources and

Single Sign-On (SSO) which is a mechanism whereby a single action of user

authentication and authorization can permit a user to access all applications and

systems where he has access permission, without the need to enter multiple

passwords.

Currently at EMSA, Oracle Access Manager (OAM) 10gR3 (10.1.4.3.0) is used to

provide base Access Management and Single Sign-on functionalities.

• Identity Management is the management of the unique digital identity, associated

attributes, security model and permission behind it. The set of user attributes varies

from application to application and includes, among others, First Name, Last Name,

Email, Groups and Roles. The security model establishes the management

relationships (e.g. who is entitled to create/edit other users) and the permission

rules (e.g. a Service Administrator can create users inside his own Service

(application) and a National Service Administrator can create users belonging only to

his own country for the service he manages). In addition, Identity Management also

provides user’s attributes and roles assignments to all applications that the user has

access through a background provisioning process or through dedicated services.

Currently at EMSA, Oracle Identity Manager (OIM) 11gR2 is used to provide base

Identity Management functionalities.

The IAM service conveys benefits to an enterprise through:

• Central user repository for all applications and systems;

• Central User Management avoiding different implementations and rules across the

enterprise;

• Reduction of human errors, a major component of systems failure, therefore highly

desirable but difficult to implement;

• Reduction in the time taken by users in sign-on operations to individual domains,

including reducing the possibility of such sign-on operations failing;

• Improved security due to the reduced need for a user to handle and remember

multiple sets of authentication information;

European Maritime Safety Agency Identity and Access Management Guide

7

• Reduction in the time taken, and improved response, by system administrators in

adding and removing users to the system or modifying their access rights;

• Improved security through the enhanced ability of system administrators to maintain

the integrity of user account configuration including the ability to inhibit or remove

an individual user’s access to all system resources in a coordinated and consistent

manner;

• Significantly reduce the User Management maintenance and operation effort.

The document is organized in several chapters:

• Chapter 1: Introduction and objectives. This chapter;

• Chapter 2: EMSA IAM technical overview. A quick description of the architecture and

components support EMSA IAM.

• Chapter 3: Access Management. Focus is given to the principles and implementation

of EMSA’s Access Management infrastructure.

• Chapter 4: Identity Management. Focus is given to the principles and implementation

of EMSA’s Identity Management infrastructure.

One final note about this document, as it is intended to be a guide used for presenting the

information on reasons, implementations, etc. it is not necessarily supposed to be read “as

a book”, i.e. from the beginning to the end in a sequential manner. This document is more

of a look-up to certain details and consequently may repeat information or “state the

obvious” in some parts which have already been spoken about in other parts or in other

documents.

European Maritime Safety Agency Identity and Access Management Guide

8

2. EMSA IAM technical overview

The Introduction and objectives chapter presented the concept of IAM as implemented at

EMSA. The next figure shows the context diagram of EMSA’s IAM framework:

AccMng

Portal

RuleCheck

IdM

SSN...STCWTHETIS

LDAP

IAM

Figure 1: Context Diagram

The EMSA IAM framework provides governance for the accesses to EMSA applications. In a

very simple way, we can say that:

• AccMng (Access Management) grants access to EMSA applications, providing Single

Sign-On capabilities across those applications;

• IdM (Identity Management) manages the accounts (entities) that are entitled to use

EMSA applications, providing functionalities like creation of new accounts or

modification of existent accounts (changes of account attributes or Roles). It should

be noted that AccMng also provides SSO functionality to IdM;

• LDAP is the central repository for access management maintaining information on

accounts, roles and associations between accounts and their assigned roles;

• EMSA’s Portal solution is built upon Liferay Portal. The Portal provides a single point

of entry for several EMSA Maritime Applications (STCW-IS, THETIS, …) and, for those

applications, also takes care of the authentication process by interacting with

AccMng;

• EMSA applications (STCW-IS, THETIS, …), commonly referred to as Maritime

Applications (MarApps), implement and provide EMSA core business functionalities.

The following diagram depicts the same information as the previous diagram, providing a

deeper view of the different technical components used and includes the basic flow of

requests. However, the machines depicted are purely “logical” and may not correspond to

European Maritime Safety Agency Identity and Access Management Guide

9

actual physical machines (these may be single, clustered or joined together depending on

actual implementation constraints).

Web Tier

SSO Frontend

(Login / Logout)

Oracle

Identity

Management
Oracle

Access

Management

Web Applications

Data Tier

Oracle RAC databases

LDAP

Apache + Webgate

OVD

Open LDAP OID AD

Liferay, Thetis, STCW, CSN2OIM Metadata
Repository

OAM OIM

Authenticates users and
Creates Session Tokens

LDAP Virtualization Layer
Implemented by
Oracle Virtual Directory
(OVD)

EMSA Employees
Corporate Directory ServerOAM Policies

Other Users
Liferay and other Applications infoRepository for OIM info

Application Users
(Browser access)

Reverse Proxy creates
an isolation layer and
controls redirects

L
D

A
P

 in
fo

rm
a
ti
o
n

Application Server

Weblogic servers:
- Authorization through JAAS
Non Weblogic servers:
- Authorization through
Custom code

Self Service Backend
and

Provisioning

OAM Metadata
Repository

SOA + OSB

Figure 2: Technical Components

The components of the IAM high level blocks depicted above are identified below:

• AccMng, Access Management, is composed of:

o SSO Frontend (Apache + Webgate) + OAM + LDAP virtualization

o Data repository

• IdM, Identity Management, is composed of:

o OIM

o SOA Suite + OSB

o Data repository

• Web Applications

o Please note that this block aggregates Portal and Maritime Applications

(THETIS, STCW, SSN, ….)

From the Access Management point of view, in this diagram it is possible to see that all

accesses are made through the Apache Server and Webgate module (acting as a reverse

European Maritime Safety Agency Identity and Access Management Guide

10

proxy). From here, if users are already authenticated, they may be permitted to access the

web applications1 (Apache + Webgate -> Web Applications). If the users are not yet

authenticated, they will be shown a Login Form from OAM for authenticating (Apache +

Webgate -> OAM). After the users submit their credentials, these will be verified by OAM on

the LDAP virtualization layer2 (OAM -> OVD) and if they are correct, a Session Token will be

generated and returned to Apache for inclusion in all subsequent requests. Apache then

redirects the user to the original URL requested. This authentication mechanism is used for

all accesses that go through the Apache reverse proxy.

If the URL requested is part of the OIM self-service (Apache + Webgate -> OIM), there is a

guarantee that users have already been authenticated and the corresponding functionality

will be accessed. Depending on the action requested, OIM may do provisioning work

through a service interface (OIM -> SOA+OSB -> Web Application) or just store information

inside its own database to be accessed through specific Web Services.

If the URL requested corresponded to a web application (Apache + Webgate -> Web

Applications), then the respective application may request Authorization information from

OAM (Web Applications -> OAM). The exact process through which this is done will depend

upon the application servers used.

If WebLogic is used, a JAAS integration might be best option; if not, a call to the OAM API

through custom code will need to be done.

Note that, although not represented in the diagram (for clarity reasons), LDAP is usually

provisioned (OIM -> SOA+OSB -> openLDAP) with the accounts information to serve as the

base for the Authentication and Authorization process described above.

1 “Web Applications” refers to Portal, THETIS, STCW, ….
2 Although shown in the diagram, corporate AD is not integrated

European Maritime Safety Agency Identity and Access Management Guide

11

3. Access Management

3.1. PROTECTING APPLICATIONS

EMSA hosts several Maritime Applications (MarApps), most of which deal with sensitive

information that needs to be protected and or restricted. To reach this goal the MarApps

have a series of protective layers:

• The first layer of protection is provided through the IdM Single Sign-On (SSO)

mechanism which only allows access to pre-identified persons.

• A second layer could be implemented through the OAM Access Policies only allowing

access to specific URL’s when users belong to specific LDAP groups.

• Any layers from this point onward can be considered as application dependent and

must be implemented inside the respective applications (i.e. application roles and/or

specific business functionality access permissions).

This document only considers the first two layers leaving the other layers to each individual

MarApp. It is worth mentioning that the second layer is not currently used to its full

potential.

3.2. AUTHENTICATION

The general concept of Authentication can be defined as “the process of determining

whether someone or something is, in fact, who or what it is declared to be”. Whilst other

definitions are possible, this is the one that most relates to EMSA’s first layer of protection

to the MarApps.

The process of authenticating a given person (henceforth referred to as a “user” of the

MarApps) is achieved by presenting a place for the user to present his credentials (providing

a “user identity” and a password) and then validating the information provided against a

repository of known and allowed credentials. This process is achieved in EMSA by Oracle

Access Manager (OAM) validating the credentials against EMSA’s LDAP.

Correctly authenticated users are allowed access to the next layers of protection while

unauthenticated users are never allowed past this first level or layer.

At EMSA, due to the SSO implementation, the user will only be confronted to give his

credentials once per session though he will have to pass through the authentication /

authorisation process on each request, albeit transparent to him.

3.3. AUTHORISATION

Once a user passes the first layer of protection, i.e. was authenticated, he is subject to the

second layer of protection which will only allow the user to access resources (URL’s)

associated to LDAP groups to which he belongs. At this point, any attempt to access a

resource to which the user has not been granted permission will result in an error page

being shown indicating that the user does not have permission to access the resource (see

following Figure).

Through the extended use of OAM (namely the ability to restrict access to predefined

resources (URLs) based upon membership of different LDAP groups), access rights similar to

application roles could be enforced without the need for the actual MarApp to implement

anything. This mechanism provides a very flexible way of implementing application roles

European Maritime Safety Agency Identity and Access Management Guide

12

because there is no need to change the application whenever specific access rules change.

There is however the need to update configurations inside of OAM but this is always much

simpler and cheaper time-wise than updating code. This mechanism is extensively used for

protecting access to the RuleCheck MarApp.

Figure 3: Authorisation denied

Attempts to access resources to which the user has been authorised to do so will result in a

transparent intervention from OAM, i.e. nothing specific to OAM will be seen, so the user will

not even be aware of existence of the protection layer.

3.4. WEBGATE

Important Note: One very important aspect in EMSA’s SSO solution is that only web

accesses are considered, i.e. http(s) requests. All other means of

access to the EMSA MarApps infrastructure (T3, RMI, etc.) are

effectively not protected by this solution.

To enforce the previously mentioned access technology restriction, all protected

communication from the MarApps interface (typically a web browser) must go through a

proxy/reverse proxy that enforces the first two layers of protection.

In the Oracle technology stack used at EMSA, the proxy/reverse proxy component is called

a WebGate (sometimes also referred to as an AccessGate) and is composed of an Apache

HTTP Server with, amongst others, Oracle specific modules for communicating/interacting

with OAM (obWebgateModule). To obtain a higher degree of service availability various

Apache HTTP server instances are running at the same time. We call each instance an SAP

(Specific Access Point). Given that EMSA has three environments that are subject to SSO,

and various MarApps being accessed through SSO, the total number of configurations

European Maritime Safety Agency Identity and Access Management Guide

13

needed makes maintenance a head-ache. To ease this problem the following architecture

has been devised.

Figure 4: WebGate Configuration Architecture

From observing the previous figure, we can see that in each of the three environments,

there are two separate sections: the common configurations section and an SAP (Specific

Access Point) configurations section.

The common configuration section is defined only once per environment whilst there are

multiple SAPs per environment (not necessarily the same ones in all environments).

3.4.1. SAP Configurations

There have already been a few mentions to an SAP (Specific Access Point) in previous

sections of this document but, exactly what is an SAP?

EMSA provides various MarApps to the user community. Some of these are stand-alone

apps and some are integrated inside an enterprise portal (Liferay Portal), but all MarApps

are web based and thus have a specific URL for being accessed. The unique URL base is

what EMSA calls an SAP.

EMSA’s production environment contains various SAP, each having its own instance of an

Apache HTTP server running. This means that at any given time maintenance can be

performed on one SAP while all others are still available/running. Whenever applications

share a common access point, i.e. MarApps that are deployed in the Liferay Portal,

interventions done to that SAP will obviously affect all those other applications.

The advantages of having SAP are:

• Avoiding unavailability of non-related access points;

• Greatly reducing the amount of work necessary to maintain WebGate configurations

by maintaining logical aggregations.

European Maritime Safety Agency Identity and Access Management Guide

14

3.4.2. Common Configurations

After having extensively analysed all the configuration files for all MarApps in all

environments, a common set of attributes/definitions was identified. To ease the

maintenance burden, all the common values were brought together into a single file and

explicitly included in each SAP configuration file. Furthermore, each SAP file sets various

“variables” that are referred to in the common files. This mechanism allows for the

maximum re-use of configurations not only across different SAP but also across different

environments as well.

Further details can be found in the complete un-abridged version of this document.

3.5. ORACLE ACCESS MANAGER

Earlier in this section mention has been made to authentication of users and authorisation

of accessing resources (URLs). The Webgate has been mentioned as being the filtering point

for both authentication and authorisation. While this is true, the Webgate is not the system

component that implements both functionalities. What it really does is, for each request,

question the Oracle Access Manager (OAM) to see if the user is correctly authenticated and

if he is authorised to access the resource. If so, the proxy/reverse proxy rules are applied.

If not, the user is redirected to a specific page indicating that access rights are denied (if

not authorised) or to the login page (if not yet authenticated).

3.5.1. Access Policies

At EMSA, we use the term “Access Policy” to describe the set of configurations needed by

OAM to validate access to a specific resource.

Policy Domains

A top-down view of OAM shows the Policy Domains to be the highest level of the

configuration structure. Each Policy Domain is a logical aggregator of a set of rules that can

be applied to a set of resources (definitions on each of these terms follows). It facilitates

management by allowing us to focus on a specific set of logically related rules/resources

while permitting the high-level operations of Enabling and Disabling the rules/resources, all

at the same time.

Resources

The word resource has come up a lot in this document and it has always been associated

with URLs. It is not too farfetched to say that there is an (almost) direct relation between

the Resources configured in OAM and the proxy pass rules defined in the Webgate.

Authorisation Rules

An authorisation rule is, as the name implies, a set of rules that define the conditions under

which authorisation is granted.

Policies

This is where everything previously mentioned comes together (and is the inspiration for

EMSA’s nomenclature of “Access Policies”). In a nutshell, this is where the Resources for the

policy domain are grouped together with specific authorisation rules.

Examples of policies for a given MarApp can be “Public URLs” and “Private URLs”. The

resources associated with the Public policy are typically a welcome page in non-portal

applications or public portlets in Liferay portal supported applications. Access grants for

these types of policies are typically “Allow All”.

European Maritime Safety Agency Identity and Access Management Guide

15

Associated to a Private policy, we will find resources that are of a more sensitive nature

therefore needing protection. With these policies an authorisation scheme is normally used

as is an authentication rule.

3.6. RBAC IMPLEMENTATION IN THE EMSA INFRASTRUCTURE

In the scope of the Single Sign On / Identity Management project, we can state that all the

applications to be considered are Web Applications. Furthermore, we can also state that all

these web applications are to be run under a common “umbrella” which is a Portal

environment which will run on Weblogic JEE (Java Enterprise Edition) Application Servers.

The Portal environment used at EMSA is based upon the Liferay Enterprise Portal

implementation. An LDAP Server supports both the Portal as well as the web applications.

We will now describe how each piece of infrastructure implements/uses the previously

mentioned RBAC concepts (basic definitions and relations).

3.6.1. LDAP

An LDAP server allows for the creation of a tree structure of Distinguished Names; DN’s in

LDAP terminology. It does not directly implement the notion of User Groups or Roles (or

even Users for that matter). However, using the DN syntax, one can just about map

anything inside the LDAP tree structure. Roles and User Groups can be obtained by

associating specific attributes to a DN (whose direct meanings can be interpreted as a Role

or User Group) or they can be obtained by answering questions like “in what groups X is a

member of” for Roles or “who are the members of that group” for User Groups.

The semantics of use of LDAP at EMSA are:

• The “top level” of the structure having beneath it:

o The groups concept, under which will exist the representation of specific

applications (or parts of and extensions to applications).

▪ Inside (or underneath) a specific application group should come the

actual names of meaningful groups.

o The users concept, under which the users branch, two organizational units

are possible:

▪ Inside the people branch are all the physical application users

▪ Inside the system branch are the system administrators or external

systems

• Since the concept of a role is not directly implemented in the EMSA semantics, such

a concept should be achieved by associating users to groups through the member

attribute. By using the first question previously described (“in what groups X is a

member of”), one can conclude that in this way it is possible to infer roles from this

structure (assuming the name of the role is the same as the name of the group for

ease of use). The only “restriction” applied here is that the name of the role be the

same as the name of the LDAP group supporting the role.

• Applications that require only global authentication should create a group named

members under the applications own group name and then associate the actual

users with this group.

• Applications that need to implement role authorizations should associate the users

with the name of the group that represents the desired role.

3.6.2. Liferay Enterprise Portal

The Liferay portal implements the following concepts: Communities, User Groups, Roles and

Users. Likewise, the portal implements the concept of a page which we will consider as a

European Maritime Safety Agency Identity and Access Management Guide

16

resource in our RBAC model (or Functionality if you like). We will now have a look at each

individual concept and discuss it in more detail.

• Users – In Liferay, a User represents a person and has a set of attributes. While it is

possible to directly associate Permissions to Users, it is highly recommended not to

do so as there are other ways to allow access to resources. There is a “one-to-one”

relation between the users in Liferay and the users created in LDAP (even though it

is possible for users to exist on only one of either side of the relation).

• User Groups – As the name suggests, this is an aggregator for joining Users. It

allows a means for performing some operations on a variable number of users

without having to do the same actions on each user individually. Whilst it is possible

to assign Permissions to User Groups, as it was for users, this should also not be

done. Like the relation between Liferay Users and LDAP users, there is also a “one-

to-one” relation between Liferay User Groups and LDAP groups.

• Roles – A role is a way through which Liferay will grant user access to certain

resources. A role is logically connected to a User Group (by associating the User

Group to the Role) and should maintain a similar name to facilitate human

reading/interpretation. This means that any User belonging to the User Group

associated with the Role will have access to the resource protected by the Role. In

this case, there is no direct connection between a Liferay Role and LDAP even though

a logical association may be made through the similarity in the names.

• Sites – In Liferay, a Site is created to allow various Pages (we have called them

resources in previous bullets and they are the Functionalities in the RBAC model) to

be joined together thus providing a single point of configuration for a specific

interest. Whenever access restrictions need to be applied (such as in the private

pages of a site), Roles can be associated to a Functionality (Page) in a Site.

We have defined some basic concepts on the RBAC model. We have also explained how this

model fits into the EMSA infrastructure. The next section will be about defining the

requirements for provisioning users in the EMSA infrastructure for the Maritime applications.

3.7. DEPLOYING APPLICATIONS WITH SINGLE SIGN-ON

Integration with AccMng and SSO can be a simple or a complex task, depending on the type

of applications to be integrated.

Simple applications may be integrated without any changes. In this case, AccMng only

grants or denies access based on the application URL.

For more complex applications or applications with more demanding access rules:

• Some applications will never need to directly interact with AccMng (such as Thetis,

STCW, etc.) because they are executed under the EMSA Portal and/or will obtain the

necessary information by using JAAS. The integration sequence diagram in chapter

3.7.1 details the EMSA’s Portal integration with AccMng.

• It is likely that other applications may need to be modified to be integrated with

AccMng. Chapter 3.7.2 documents how these changes can be done by using a

“generic” application such as the Java Pet Store reference application as a “Guiney

pig”.

3.7.1. Portal integration

The next figure shows a sequence diagram representing the EMSA’s Portal integration with

AccMng:

European Maritime Safety Agency Identity and Access Management Guide

17

Figure 5: Integration Sequence Diagram

3.7.2. jPetStore

In the EMSA test environment, a well-known reference application – the Java Pet Store –

has been deployed that allows for investigation and development of the Single Sign-On

solution. One of the goals of deploying such an application in this environment was to

assess the difficulties involved in adapting a web application to the Single Sign-On system.

Before going into the details of the necessary changes, we will first explain how the

“normal” (unchanged) application works. The Java Pet Store application simulates an on-line

shop for selling animals. There is “public” access to the application in which you can browse

the existing information and you can even put items into a “shopping cart”. If you decide to

checkout your order, containing items in the shopping cart, you will have to log-in to the

application to be identified. Only users that have been previously registered (provisioned) to

the application may checkout orders. Likewise, if you wish to change your user attributes

(password, address, phone, etc.) you must also be logged in.

Pre-emptive Authentication

A first interesting approach, while still not the desired one because of not fulfilling the

previous “public user” functional requirements, will allow us to demonstrate how to perform

authentication through Single Sign-On with minimum changes to the application. In this first

approach, the whole application has been registered as “protected” in OAM (Oracle Access

Management). This has the effect of the user/password being requested even before the

first screen of the application is shown. After the initial logging in to OAM, there is no

further need for identifying the user. If a user had already been authenticated in OAM prior

to accessing any application screen, he will not be prompted to do so again (Single Sign-

On). Please note that the only noticeable change in the application is the fact that the login

form is never shown to the user.

Technical Considerations

European Maritime Safety Agency Identity and Access Management Guide

18

We have indicated that the jPetStore application is now performing Single Sign-On with

minimal changes to the application. We will now proceed to explain the actual changes

made.

Three URLs were intercepted (the signonForm, the checkout and the editAccountForm). All

three of these URLs have now been internally (internal to the server) redirected to the sign-

on URL with additional parameters for the username and password. There are two

comments to be made about this URL: first – it is always just internal to the server so there

is no problem in sending the username and password as http GET parameters because the

internal redirection can never be intercepted, and second – due to the fact that the user’s

password is never known outside of OAM, we need either to pass the username twice

(serving as password) or pass a constant dummy password. This must be consistent with

the provisioning process followed.

Public and Private access to the application

As we have previously stated, the pre-emptive authentication scheme is not our target. As

such, we now need to make some changes to the OAM to be able to comply completely with

the full functional requirements. It is important to point out that there will not be the need

to make any more changes to the jPetStore application, but the previously performed

changes are still necessary for this stage.

Technical considerations for granting public access

Because of the previous section, the jPetStore application is a protected resource which will

require user authentication to be accessed. However, the functional requirements state that

there is a part of the application that has public access.

In Oracle Access Manager, access the Policy Manager Application. Under the “Private URLs”

policy domain, we will add another policy to the ones already existing in this domain. We

have called this new Policy “JPetStore Public” and it consists of an http policy on GETs and

POSTs, for all resources and all host identifiers, with the “/jpetstore/…/*” URL pattern.

For this policy to work correctly, the “Authentication Rule” associated to it must be that of

“Anonymous Authentication” without any specific “Actions”.

Once these changes are made no more user authentication is needed to access the

application. There should now be no Authentication Form presented to the user whenever

he accesses the jPetStore application, whatever the operation performed within. This,

however, is not what is intended as the user will now have to perform an application login

(answering to an application login form – not the OAM one) whenever he tries to access the

“private” area of the application (accessing the user account or checking out an order).

Final notes on configuration

We have had also the need to configure another policy, the same as the previously

mentioned “JPetStore Public”, associated to the public URL for the application “/jpetstore”.

One other important aspect to consider is the need to change the default session identifier.

If the application is implemented using Java technology, change the default session

identifier from JSESSIONID to something different (unique to the application), i.e.

JSESSIONID_petStore. If you do not make this change, there is a high probability that there

will be “session corruption” if more than one Java application is protected by the same

Access Manager.

European Maritime Safety Agency Identity and Access Management Guide

19

3.8. LOGGING OUT OF SINGLE SIGN-ON

A first-hand premise of SSO is that once a user is authenticated (in any given session), he

will be able to access any EMSA Maritime Application to which he is authorised to do so, this

without having to re-authenticate himself. The EMSA MarApps must be prepared for the

integration with OAM to allow automatically signing in a user and thus achieving an SSO

solution.

One often overlooked aspect of an SSO system is that of logging out. Under the assumption

that a valid session is in place, a user accessing an application that he has access rights to,

will be automatically able to see the respective application (without having to present his

credentials again – remember there is a valid session). When a user decides that he does

not want to continue accessing a given application, he would normally “logout” from that

given application and continues to use any other application that he so wishes. However,

due to the automatic nature of SSO, whenever the user re-accesses the original application

from which he previously logged out, he will be automatically logged in (due to the auto-

login capability of SSO) and will be given the perception that he effectively never logged

out. In practical terms this means that the operation of logging out is superfluous unless it

is applied to ALL applications that the user was accessing under the current session.

If a global logout solution is not applied, a user can, at any time, simply close a browser tab

without logging out of an application as the result is the same as logging out and being

automatically logged in again. Please note however that if closing a browser tab results in

the end of a browser session (if the tab is the only one open on the browser and no other

browser windows are open, for example), then the user will have to log in again if not for

any other reason that the browser will not use the same session again when it’s re-opened.

This is a situation which the user should avoid as the session may still be active in the

applications and be subject to session hijacking.

EMSA has chosen to implement a “Single Sign-Out” precisely for the previously mentioned

reason of logouts, on their own, being superfluous.

3.8.1. Technical implementation of a global Logout

The implementation done at EMSA is that of once a logout URL is selected (from any of the

SSO integrated applications), OAM will intercept the call and start a process of invoking the

logout URLs of all the applications to which the user has accessed (been logged in to). After

all the application logout URLs have been invoked, OAM will proceed to terminate its own

session, thus effectively logging the user out in a safe way.

Each Maritime application that has been integrated with SSO should be prepared to logout

correctly upon request.

One final consideration associated to each application needs to be assessed and that is the

existence of a logout URL for the application.

3.9. PASSWORD MANAGEMENT

Besides granting access to resources, a Single Sign-On solution has one other major task,

that of managing user’s credentials or passwords. The managed credentials obey to certain

conditions set out by a password policy. We’ll explain how credentials are managed at EMSA

and the password politics adopted at EMSA in the following sections.

3.9.1. Change Password / Lost Password Management

European Maritime Safety Agency Identity and Access Management Guide

20

The EMSA IdM platform is currently responsible for the Password Management actions

encompassing several different functionalities. This document only refers to two specific

functionalities, change password and lost password.

The SSO solution for managing passwords adopted at EMSA started with an out-of-the-box

solution proposed by Oracle but was deemed as inadequate and a new bespoke solution was

developed by Oracle.

Change Password

The original implementation allowed userId enumeration because the “Change Password”

required the user to insert a valid userId before going to the actual page to change the

password. The navigation was done using a link that was available in the Login screen

before the user was authenticated.

Placing this link in a private area has solved the problem. As private areas are only

accessible after user authentication, it assures that the user meets the conditions to change

his password.

Therefore:

1. The “Change Password” link was removed from the original Login screen;

2. A Link to the “Reset Password” functionality is now available in the “My Information”

page provided by IdM to all Maritime Applications. Using this common IdM page

avoids the need of changing the Maritime Applications that aren’t deployed under

EMSA Portal.

Reset Password

IdM V2 now supports a concept of resetting a user’s password. This functionality can be

accessed when editing an account by selecting the “Reset Password” link. Correct

authorization is executed in the implementing code to verify if indeed a user can or not

change the password for the account requested (for example, at this time a National Service

Administrator – or lower – cannot change passwords for accounts). The basis for this

functionality is the “Lost Password” implementation (described next) with the difference that

the password introduced can only be used once (to effectively enter the system and change

the password to something only known by the end-user) and also the auditing information

registered is very clear that the action was done by an administrator and not upon request

of the end-user.

This functionality is mainly useful when the “Lost Password” cannot be executed because an

invalid email is defined for an account, or when the email is generic for multiple accounts.

Lost Password

A 2-step procedure based on a One-Time generated URL replaced the original Challenge

Questions mechanism for the “Lost Password” functionality.

The “Lost Password” function is also able to unlock an account (if previously locked) and

provides a detailed logging mechanism to allow an easy diagnosis of faulty or doubtful

situations and/or audits.

However, it should be noted that currently e-mails are not unique. Usage of shared e-mails

might be problematic from the End User point of view. Maritime Applications are strongly

encouraged to take measures to address this constraint.

3.10. MAP INTEGRATION

A considerable effort has been made to integrate all EMSA Maritime Applications under the

same entry point – known as MAP (Maritime Application Portal).

European Maritime Safety Agency Identity and Access Management Guide

21

3.10.1. MAP login Process

MAP has the login screen being directly integrated inside the Portal. With MAP, while the

user is still not authenticated he will see a login form on the first page of the Portal where

he can directly insert his credentials and proceed to authenticate. All subsequent messages

(invalid credentials, etc.) will be displayed in the same space giving the user the impression

that he never leaves the screen. For compatibility purposes, for those applications still not

integrated into MAP (LRITDC for example), a login screen similar to the MAP layout will be

displayed. This will be discussed in the next sub-section.

 Figure 6: MAP integrated Login

3.10.2. MAP Access Policies

To cope with this integration, in OAM an URL resource was created “/mapLogin” that is

associated to a Policy named “MAP Login”. This policy continues to have Form Based

Authentication, redirecting to the following URL in case of failure:

- /web/guest/home?p_p_id=login_WAR_emsamaploginportlet&p_p_lifecycle=0&_login

_WAR_emsamaploginportlet_failed_login=true

3.11. JSON LOGIN

Originally all EMSA MarApps were web applications that were accessed via internet browser.

Over time, due to business and technological advances, some of the MarApps are (also)

accessed via dedicated applications running in mobile devices. Two such examples are

Thetis Mobile Application and IMS Mobile. Even though the underlying technology is

different in both cases, what we describe next is valid not only for these two cases but also

for any other application that wishes to use the same strategy.

European Maritime Safety Agency Identity and Access Management Guide

22

3.11.1. User Authentication

In at least one of the cases described previously, i.e. IMS Mobile, despite being created as a

stand-alone application; it still has the need to access business services supplied by EMSA’s

infrastructure. Basically, this means that a person using the application will have to identify

himself as a recognized user, both to allow actual access to the application as well as to

provide boundaries for what information the user can access. As such, the user must be

authenticated against EMSA’s infrastructure and later authorized to access certain

functionality or view determined data. The easiest way to have a clear perception of the

user and identify his access rights is using EMSA’s SSO infrastructure.

To achieve this goal, EMSA provides a very simple “pseudo web service” that accepts as

input the user’s identification and his credentials. The information is posted to a URL that

processes the information and effectively logs the user in returning success or not logging

the user in and returning error. The return information is in the JSON format.

Login URL

The URI to access pseudo web service and attempt a user login is /mobileLogin. Please note

that this URI only accepts POST requests and should contain two variables: userid that

effectively contains the user’s id and password that will contain the password for the user’s

account.

Return values

Under normal circumstances, once a POST has been executed to the aforementioned login

URI, one of two things can happen:

• The user is authenticated correctly in which case a JSON message consisting of

{ Status: "success" } is returned;

• The user is not authenticated correctly, or the actual userId does not exist, in which

case a JSON message consisting of { Status: "error" } is returned;

The reason this service has been labelled as a “pseudo web service” is because there are

certain conditions that will trigger an HTML response instead of a JSON response thus

defying compliance to the definition of a web service. The causes of return of such HTML

pages are enumerated below. Please note that all these responses should be treated as the

user not being logged in. The possible causes are:

• The user is locked out due to having failed his password too many times;

• The user’s password is about to expire so a warning of such is sent from OAM;

• The user’s password has expired, and a new password should be set;

These cases should be dealt with/resolved by normal access to the SSO login page via a

browser.

3.11.2. User Authorization

Once the user is correctly authenticated, the MarApp using the JSON services can obtain

information on the user by invocation of the corresponding services described in 4.4.2 User

Information Web Service (or “PULL” Model).

European Maritime Safety Agency Identity and Access Management Guide

23

4. Identity Management

4.1. EMSA BUSINESS VIEW ON IDENTITY MANAGEMENT

The first version of Identity Management implemented at EMSA was mainly based on an

RBAC model (Role Based Access Control) with the user’s attributes being spread out in

vertical silos (i.e. the MarApps). As more and more MarApps became integrated with IdM, it

became evident that there was a set of common attributes that should be the same (instead

of the existing value per MarApp model). It was also apparent that an alternative structure

to the RBAC model would be beneficial for some MarApps. When it became an absolute

necessity to upgrade the underlying platform to a newer version, the opportunity was seized

to execute these changes. The latest version of EMSA’s IdM now has a common set of

attributes per user account as well as providing support for a set of Business entities as

described in the following sub-chapters.

4.1.1. Service

A Service is a logical entity that represents a set of (one or more) Business Functions

typically implemented by an application3 (MarApp). In the context of the account

management, it facilitates the logical discovery of a list of Profiles by filtering those visible

or available for choosing. One example is the Thetis Service which has all the Thetis Roles

mapped as Profiles and subsequently associated to the Thetis Service.

4.1.2. Profile

A Profile is a group of one or more Roles logically combined or aggregated together such

that they can be assigned/de-assigned to a User Account, all at the same time. It should be

considered as a very high-level logical abstraction of a job function executed by a user.

4.1.3. Role

In the context of EMSA’s IdM, a Role is a low-level entity that is interpreted in one of two

ways, depending on the MarApp or system supporting the role.

For some MarApps (such as Thetis or STCW) a Role is a logical definition of the function

assumed or part played by a person or thing in a particular situation. An example of this is a

THETIS_INSPECTOR that is a person that has the function of performing inspections of ships

according to the PSC regulations. One other example is an LRITDC_ADMIN that is a person

that manages the LRITDC MarApp.

Another possible interpretation for the Role is to consider it as a group of permissions that

grant or deny access to specific resources. Roles facilitate the assignment of multiple

permissions to a User Account. Please note that Permissions themselves are out of scope of

IdM. An example of this interpretation is the role VIEW_ABM whose description is “View

ABM Alerts”. The intent behind this role is to allow a person to view ABM alerts and not that

of having a function of spending the time viewing ABM alerts.

3 Please note that a Service can be implemented by more than one MarApp but in those cases there is

always a principal MarApp providing the base functionalities. Please also note that a Service can be
implemented via a horizontal platform or system such as Liferay Portal or LDAP

European Maritime Safety Agency Identity and Access Management Guide

24

4.1.4. Country/Institution

In the context of EMSA’s IdM, the Country/Institution defines the “Nationality” (in a

broad sense) of a User thus allowing the establishment of an area of control for a National

Administrator (see 4.2 Security Model). Please note that in EMSA’s context, an Institution -

such as EFCA for example, is also considered at the same level as a Country.

4.1.5. Organization

At EMSA, the concept of an Organization is a sub-entity of a Country or Institution. The

Organization a user belongs to is used to establish not only an area of control of a Local

Administrator (see 4.2 Security Model), but also to filter Profiles and Operations available to

be assigned to accounts.

4.1.6. Operation

In EMSA’s IdM it’s possible to assign Operations to an account. In Business terms, an

Operation defines an Action that is available to a User in a given context (MarApp). Not all

MarApps support Operations, and IdM is completely agnostic to their values and meaning.

The list of Operations available to a given user is dependent on that user’s Organization.

4.2. SECURITY MODEL

EMSA’s IdM is the repository for the account information for users, as well as accumulating

as a repository for generic access information to be used by MarApps. It also provides

services to access these sets of information. As such, IdM is itself an Application and needs

to have its own set of business rules to regulate who can do what in the IdM application. In

IdM, the foundation for this regulation is the Security Model which establishes the

management relationships (who is entitled to create/edit other users) and the permission

rules (which serve as filters for limiting who a user can administer) or, said in another way:

The Security Model defines who can do what in a hierarchical way.

The EMSA Security Model has 5 hierarchical levels. From the most privileged level to the

least, these are:

1. EMSA Administrator

Identity Manager super users. Users belonging to this level are entitled to manage

all user accounts without restrictions and they also have privileges to access

some normally restricted IdM functionalities. “EMSA Administrator” level can only be

assigned to a person belonging to EMSA and is normally limited to a very small

number of people as it implies knowledge of a specific skill-set.

2. EMSA Service Administrator

Identity Managers for a specific Service. Users belonging to this level are entitled to

manage user accounts related with a specific Service (i.e. the services defined

as those he is administrating). “EMSA Service Administrator” can only be assigned to

a person belonging to EMSA and should be limited to a small number. It should be

noted that a single person can be associated (i.e. have this level) with more than one

service.

3. National Service Administrator

Identity Managers for a specific Country/Institution relating to a specific service.

Users belonging to this level are entitled to manage user accounts that are

simultaneously related with the Administrator´s Service and the

Administrator’s Country/Institution. “National Administrator” level can be

European Maritime Safety Agency Identity and Access Management Guide

25

assigned to any user of a specific Country/Institution even though at the business

level there is normally a very limited set of people that possess this privilege.

4. Local Service Administrator

Identity Managers for a specific Organization inside a specific Service and

Country/Institution. Users belonging to this level are entitled to manage user

accounts that are simultaneously related with the Administrator´s Service,

Country/Institution and Organization. “Local Administrator” level can be

assigned to any user of a specific Country/Institution for a given Organization.

5. End-user

End-Users have the most limited set of Identity Management privileges. They are

only entitled to modify a limited set of their own personal attributes (i.e. the ones

which are common to all applications).

It should be noted that not all Maritime Applications contemplate the use of all levels. Most

notably the Local Administrator is rarely used by most applications.

4.2.1. Security Model Level Correspondence to Application Roles

One common misconception that occurs relating to IdM is the assumption of an implicit

relationship between the EMSA Security Model and the Maritime Application functional roles.

This implicit relationship does not exist. Any given user can be, for example, an end-

user within an application and simultaneously be an Administrator (EMSA or National level)

within IdM (for that same application). There is no mechanism imposing any limitation

whatsoever. However, it is common for applications to request the establishment of a

relationship of their internal application roles to certain security model levels explicitly.

The explicit relationship establishment is done through role mappings, i.e. each role is

assigned a security level value. This means that whenever a given application role is

assigned to a user, he will “inherit” (be automatically assigned) a certain security model

level. One example of such a mapping is the “Thetis System Administrator” role has a

security level value of “EMSA Service Administrator”. This means that whenever a user is

assigned that Role, he will become an “EMSA Service Administrator” for Service Thetis (as

this Role is associated to this Service).

In the end, it is important to retain that management inside IdM is completely independent

of any form of management within any given Maritime Application.

4.2.2. Accumulation of Levels

An important misconception is that an account has one (and only one) security level. While

it’s true that if a user has various Roles assigned to him (via Profiles), he will have the

highest security level of all those Roles, this must be seen in the context of the Service to

which the roles belong. It is possible for a user to be, for example, a National Service

Administrator for one given Service while still being an End-User for another distinct

Service.

4.3. IDENTITY MANAGEMENT FUNCTIONALITIES

For a User to have access to a MarApp with the appropriate permissions, IdM must handle

User Account Management, including Provisioning of User Attributes.

While some operations of the application are performed following an automated process,

most require either the intervention of or the initiation by a user. The following chapters

demonstrate the various aspects of Identity Management.

European Maritime Safety Agency Identity and Access Management Guide

26

4.3.1. Reconciliation

The Reconciliation functionality of IdM is responsible for importing data from external

systems, necessary for configuring a User Account. Examples of reconciliation of data is the

list of Countries/Institutions from CBR (Country Base Registry), Organizations from COD

(Central Organization Database), and low-level information used for provisioning from the

Staging Area Database.

It should be noted that IdM is the authoritative source for User information.

4.3.2. Account Management

Account Management is the name given to the set of actions that may be performed on a

User Account to Create, Remove, Update/modify, Delete/disable. Besides the typical CRUD

functionalities available, as part of IdM it is also possible to Search for Accounts, view the

relationships between Services / Profiles and Roles, view the auditing information on

changes made to accounts as well as recovery of failed provisioning attempts.

4.3.3. Provisioning

The act of provisioning is the process by which IdM provides the updated User Account data

to all the MarApps/Systems the affected User has access to (possesses a Profile/Role for).

Please note that this effectively corresponds to the “PUSH” model described in 4.4.1

Provisioning Applications or “PUSH” Model.

4.3.4. Other Administrative Functions

In this category are other operations not included in the other groups and are available only

to the highest Administrator level, such as Reporting, Exports and Bulk Load.

4.4. IDENTITY MANAGEMENT INTEGRATIONS

EMSA’s Identity Management system (IdM) is fully integrated within EMSA’s applicational

infrastructure. This effectively means that it can be accessed via Single Sign-On like any

other MarApp/System. It can send information (i.e. invoke services or return data via

invoked services) to other existing MarApps/Systems and finally, it can also receive

requests to moderate its behaviour (i.e. provide functionalities upon request). The following

chapters describe some of these aspects.

4.4.1. Provisioning Applications or “PUSH” Model

One of the goals of having an Identity Management solution in EMSA is to have a common

way of provisioning users to applications. This essentially means that whatever can be

found common to all possible applications should be stored locally in IdM and thereafter

provisioned to each MarApp that the user is effectively a member of (i.e. having a relevant

Role in that MarApp).

EMSA’s Maritime Applications are provisioned by IdM to contain user information. This

mechanism can be roughly described as being a “PUSH” mechanism in that EMSA’s Identity

Management system effectively sends information on new users (or changes made to

existing users) to the appropriate systems/MarApps for which this information is relevant.

The way this is done is through invocation of a series of established Web Services available

European Maritime Safety Agency Identity and Access Management Guide

27

in the MarApps (or eventually using another form of API such as an LDAP connection). IdM

attempts to guarantee that every system/MarApp is kept up-to-date with the latest

information on a user, be it personal attributes such as first name, etc. or authorization

information such as Profiles (via Roles).

4.4.2. User Information Web Service (or “PULL” Model)

It should be noted that in the EMSA eco-system of Maritime Applications and horizontal

platforms, the “PUSH” mechanism may not always be the best solution for user

management. There are cases in which the actual MarApp is significantly (or even

completely) agnostic about users. One such example is STCW which has the need for

“knowing” users and their personal attributes (such as their “Country” for example) but

does not actually keep any information about them. Another much more radical example is

RuleCheck that, in its current form, has absolutely no concept or knowledge of users.

RuleCheck’s content is served to users in a differentiated model by strategic use of the

Access Management component of IdM (the OAM) allowing or denying users to see certain

content. Still another example is the SEG (SafeSeaNet Eco-system GUI) that only needs to

know what the accessing user can or cannot do and see (i.e. his Profiles/Roles and

Operations). This necessity led to the establishment of a new architectural model, the

“PULL” model. The “PULL” model is none other than a service supplied by IdM allowing any

MarApp to request information about a given user.

UserInfo REST Web Service

Currently the “PULL” model is implemented through a REST Web Service that is invoked via

a normal HTTP GET call passing the user’s identification and returning information in the

JSON format.

The UserInfo REST Web Service can only be called from within EMSA’s infrastructure so no

data leakage can occur to entities outside of EMSA. The context path of the service is not

available through any URL that can have public access. There is currently no assumption

made about the user invoking the service, so no authentication is done.

The UserInfo Web Service will typically return one of two possible sets: a null message if

the user ID passed as the last parameter does not exist in IdM, or a JSON message

containing information on the user ID passed.

4.4.3. Accessing IdM Functionalities via direct URL

EMSA needs to access OIM directly from links placed in some applications, namely MarApps

and Liferay Portal. A bespoke module has been developed to allow such direct access.

Search User

The URL for “jumping” into IdM directly in the Search Users Functionality is

Through this URL authorized users can execute a search for one or more accounts and then

proceed to execute other actions (view, edit, etc.)

Create User

/identity/faces/home?tf=SEARCH_USERS

European Maritime Safety Agency Identity and Access Management Guide

28

The URL to access the Create User Form is

Edit User

The URL to access the Edit User Form window is

In the previous link, <User Login> must be changed to the correct user identification per

call to the edit method.

Edit my account (only fields common to all applications)

The URL to access the Edit my account User Form window is

You might notice that this link is similar to the Edit User link except for the fact that no

UserLogin identification is provided and as such the account of the user accessing is

displayed.

4.5. STAGING DATABASE MANAGEMENT CONSOLE

The purpose of the Staging Database Management Console (SDMC) is to manage the

Staging Database Entities along with their relationships, providing also Transaction

consistency functionality in order to avoid synchronization incompatibilities.

The following are basic business rules that reflect the architecture design of the Staging

Database:

• A Country may be related with none, one or several Organizations.

• An Organization is a hierarchical structure that may have none or one parent.

• An Organization belongs to one unique Country.

• A Profile may include one or several Roles.

• Roles may be used by none, one or several Profiles.

• Each Role belongs to one unique Service.

• An Organization can be related with none, one, or several Operations.

• An Operation can be related with none, one or several Organizations.

• A Provisioning Endpoint may be used by none, one or several Roles.

• A Role may send information to none, one or several Provisioning Endpoints.

The SDMG provides a User Interface for the management of the following entities and their

relationships:

• Profile

• Role

• Service

• Operation

• Provisioning Endpoint

• Security Level

/identity/faces/home?tf=MODIFY_USER

/identity/faces/home?tf=MODIFY_USER&userLogin=<User Login>

/identity/faces/home?tf=CREATE_USER

European Maritime Safety Agency Identity and Access Management Guide

29

• Country

• Organization

In this scope, it is considered that the management of each Entity type includes:

Business

Requirement Title

Business Requirement Description

1 Search Entities

Search Entities based on attribute criteria.

a. Search of each attribute will be based on the Contains

clause.

b. Search with the AND operator for multiple attributes

criteria.

2 Grouping and Ordering Grouping and Ordering capabilities of the search results.

3
Access functionality

from Search

Provide access to Create, Modify, Disable/Enable functionalities

from the search results.

4 Create Entity

Create a new Entity and their direct relationships.

a. Ability to accept all Entity attributes and create a new entry

in the Entity table.

b. Unique Code attribute should be composed using a pre-

defined prefix.

c. Last Changed attribute should have the timestamp of the

creation moment of the Entity.

5 Update Entity

Update an existing Entity and their direct relationships.

a. Ability to accept modifications to the Entity attributes.

b. The Unique Code attribute cannot be modified.

c. Last Changed attribute should have the timestamp of the

last change of the Entity.

6 Disable/Enable Entity

Disable/Enable an existing Entity and their direct relationships.

a. Ability to set and reset the Entity status flag to enabled or

disabled.

b. Enabling or Disabling a top or hierarchically higher Entity

should be reflected in all its direct relationships.

7 Relationship flexibility
Ability to clearly see and directly jump to the management

functionalities of all other direct relationships of an Entity.

8 Authentication process
EMSA Access Management should be responsible for the

authentication process.

9 Authorization process

SDMC should be responsible for the authorization process.

Authorizing user’s accounts to access SDMC functionalities should

be based on specific roles granting user specific privileges for that

effect.

10
Staging Database

Consistency

The ability to temporarily store or permanently commit the

modifications in order to not have inconsistencies.

European Maritime Safety Agency Identity and Access Management Guide

30

ANNEX A – EMSA Customisations on OIM – Oracle Identity Management

To comply with EMSA’s requirements for Identity Management, the Oracle Identity

Management tool was customized. At the Database level, various entities were introduced.

These are listed and described below.

Database Table Description

Service Maritime Business Services. A Service represents a set of (one or more) Business
Functions implemented by an application (MarApp). Examples of Services are
Thetis, IMS - Integrated Maritime Services, EOS - Earth Observation Services

Profile Business Profiles. A role played by a person within the context of Maritime
Applications. Examples are Thetis Allocator, Document Management Reader,
LRITDC EU DC Administrator

Role Maritime Application Roles. An entity that can correspond to an RBAC role within a
Maritime Application or in exceptional cases correspond to a permission within a
Maritime Application. Examples are Locations Manager, CSD Viewer, View ABM
Reports.

Operation Maritime Business Operations. Within the context of a Maritime Application, an
Operation defines an Action that is available to a User. Examples of Operations are

Frontex, CleanSeaNet, SafeMed

Country Registered Countries / Institutions. Define the Nationality of a User and the area of
control of a National Administrator. They can be Institutions, Companies or Regional
Agreements instead of Countries. Examples are EMSA, Portugal, FRONTEX.

Organization Organizations. Define the actual Country Organization a User belongs to and the
area of control of a Local Administrator. Examples are The Antigua Department of
Marine Services, Directorate of Shipping Aruba, Port of Zeebrugge.

Provisioning_EndPoint Provisioning Points. These are physical systems that receive data from the Identity
Management system. Examples are Liferay Portal, LDAP, Thetis.

Security_Level Security Levels. The various classifications assigned to accounts via Roles assigned
that define permissions/allow actions within the Identity Management system.
Examples are EMSA Administrator, National Service Administrator, End-User.

Operation_Organization Operations – Organizations associations. This indicates what Operations are
assignable to accounts having what Organizations. Data restriction is relative to the
account being edited. All Operations should be assignable to Organization EMSA.

Profile_Organization Profiles – Organizations associations. This indicates what Profiles are available for
assigning to other accounts by the account doing the editing (having the
Organization). Data restriction is relative to the account doing the editing. All
profiles should be allowed for Organization EMSA.

Profile_Role Profiles – Roles associations. This indicates what Roles are provisioned when the
account is assigned the Profile.

Service_Role Service – Role associations. This establishes the relationship between a Role and
the underlying Business Service that implements the functionalities allowed via the
Role.

Role_Provisioning Role – Provisioning points associations. This establishes the actual physical system
that is provisioned when the Role is to be provisioned (via assignment of Profile).

IDM_AUDIT_USR_M Auxiliary table used for provisioning accounts

IDM_ORGANIZATION_CHILD Auxiliary table used for provisioning accounts

IDM_PROVISIONING_FAILURE Auxiliary table used for provisioning accounts

IDM_PROVISIONING_FAILURE_MSG Auxiliary table used for provisioning accounts

IDM_TASK Auxiliary table used for provisioning accounts

IDM_USR_AUX Auxiliary table used for provisioning accounts

IDM_USR_M Auxiliary table used for provisioning accounts

IDM_USR_M_OLD Auxiliary table used for provisioning accounts

European Maritime Safety Agency Identity and Access Management Guide

31

Database View Description

IDM_USER_V Database view that exposes, in human readable format, a complete attribute set of
the existing accounts.

IDM_USER_OP_V Database view that exposes, in human readable format, the Operations associated
to the accounts.

IDM_USER_SP_V Database view that exposes, in human readable format, the Profiles associated to
the accounts. It also shows the Services associated via indirect relationship Profiles
-> Roles -> Services.

IDM_USER_PR_V Database view that exposes, in human readable format, the Profiles associated to

the accounts as well as the Roles associated to those Profiles.

European Maritime Safety Agency Identity and Access Management Guide

32

ANNEX B – Statistical Information in Identity Management

EMSA’s Identity Management system is a repository for certain information used within its

Maritime Applications. That information is stored in the form of entities.

As of 22nd April 2020, the quantities of such entities are described below.

Production Environment

Entity Quantity

Registered Accounts 13988 accounts

Maritime Business Services 21 Services

Business Profiles 647 Profiles

Maritime Application Roles 687 Roles

Maritime Business Operations 36 Operations

Registered Countries / Institutions 107 Countries / Institutions

Organizations 281 Organizations

Provisioning Points 8 Provisioning Points

Security Levels 5 Security Levels

Operations – Organizations associations 528 associations

Profiles – Organizations associations 2710 associations

Profiles – Roles associations 1383 associations

Service – Role associations 696 associations

Role – Provisioning points associations 1274 associations

European Maritime Safety Agency Identity and Access Management Guide

33

ANNEX C – SOA Suite Processes

The architecture chosen for EMSA’s Identity Management separates the act of

creating/editing an account in the UI tool (OIM + SOA) from the act of provisioning (SOA +

OSB) the information to the physical systems (Maritime Applications and support

platforms).

When a message reaches the provisioning layer, it does so via the User Account

Provisioning Proxy Service. A Connector is responsible for calling the corresponding

operation of the User Account Provisioning Proxy Service, which in turn decides for the

appropriate flow to be followed. The description of the User Account Provisioning Proxy

Service is depicted in the figure below.

Please note that there is an embedded object following the image that can be expanded

allowing viewing of the complete process in greater detail.

User Account

Provisioning Proxy

European Maritime Safety Agency Identity and Access Management Guide

34

ANNEX D – Web Service Details

This section details what was overviewed in section 4.4.2 User Information Web Service (or

“PULL” Model), the UserInfo web services.

The UserInfoInterface Proxy SOAP and Rest services provide the User Account information

by calling the IDM-Interface SOA Composite. The SOAP service requires user authorization

to perform a successful call and the output is used for reporting purposes. For the Rest

service no authorization is required.

The Adapter exposes operations allowing search and extraction of data with the following

criteria:

• SOAP

o User Account Id

o Status

o Last Update Date

o Type

o Country

o Organization

o Service

o Profile

o Operation

• Rest

o User Account Id

The information below is valid for both SOAP and REST services

UserInfoRequest operation of IDM-Interface Composite

The search fields for the SOAP service can be combined in a single search with an AND clause

only.

 Inputs

Name Mandatory Type Description

accountId No String The id of the user.

status No String The user status.

lastUpdateStart No String The user’s last update date.

lastUpdateEnd No String The user’s last update date.

type No String The user’s type.

country2Code No String The user’s country code.

organizationCode No String The user’s organization code.

profileCode No String The user’s profile code.

operationCode No String The user’s operation code.

serviceCode No String The user’s service code.

startRow
No Number From which user account should start

returning results.

endRow
No Number Until which user account should stop

returning results.

Outputs

Name Mandatory Type Description

type Yes String The type of the account.

accountId Yes String The id of the user.

securityLevelCode Yes String The security level code of the account.

status Yes String The status of the account.

disableDate No Date The disable date of the account.

lastUpdate Yes Date The user’s last update date.

initial No String The initials of the user.

European Maritime Safety Agency Identity and Access Management Guide

35

firstName Yes String The first name of the user.

middleName No String The middle name of the user.

lastName Yes String The last name of the user.

email Yes String The email address of the user.

address No String The postal address of the user.

phone Yes String The telephone of the user.

fax No String The fax number of the user.

alertEmail No String The alert email of the user.

alertPhone No String The alert phone of the user.

categoryType Yes String The authority type of the user.

country Yes String The country of the user.

OrganizationOperati

onsInfo

Yes ListOfObject The organization and operations data.

Name Type

organizationCode string

organizationDescription string

operationDescription string

operationCode string

SecurityLevel

Yes Object The security level data.

Name Type

securityLevelCode string

securityLevelDescription string

CountryInstitution

Yes Object The country data.

Name Type

categoryType string

country string

country2Code string

ServicesProfilesInfo

No ListOfObject The service and profile data.

Name Type

serviceCode string

serviceDescription string

profileCode string

profileDescription string

RolesInfo

No ListOfObject The role data (only REST).

Name Type

roleCode string

roleDescription string

Depending on the query being made, the SOAP Service might return a large set of results;

to avoid stalling the response, if the number of accounts is higher than an established limit,

the SOAP Service automatically splits the result set in different pages.

SOAP Interface:

URL:http://<SERVER>:<PORT>/IDMExposedInterfacesProject/ProxyServices/UserInfoInte

rface?WSDL

Where <SERVER> is environment dependent.

Access to the SOAP interface is granted only to Authenticated/Authorized accounts.

REST interface:

URL: http://<SERVER>:<PORT>/UserInfoInterfaceService/UserInfo/{accountID}

Where <SERVER>:<PORT> is environment dependent.

No Authentication/Authorization is required.

European Maritime Safety Agency Identity and Access Management Guide

36

SOAP Example

REQUEST

========
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:typ="http://org.exposed_interfaces.genericws/types">

 <soapenv:Header/>
 <soapenv:Body>

 <typ:userInfoRequest>

 <!--Optional:-->
 <typ:accountId>000-TEST-26</typ:accountId>

 <!--Optional:-->

 <typ:country2Code></typ:country2Code>
 <!--Optional:-->

 <typ:organizationCode></typ:organizationCode>

 <!--Optional:-->
 <typ:serviceCode></typ:serviceCode>

 <!--Optional:-->

 <typ:profileCode></typ:profileCode>

 <!--Optional:-->

 <typ:operationCode></typ:operationCode>

 <!--Optional:-->
 <typ:status></typ:status>

 <!--Optional:-->

 <typ:type></typ:type>
 <!--Optional:-->

 <typ:lastUpdateStart></typ:lastUpdateStart>

 <!--Optional:-->
 <typ:lastUpdateEnd></typ:lastUpdateEnd>

 <!--Optional:-->

 <typ:startRow></typ:startRow>
 <!--Optional:-->

 <typ:endRow></typ:endRow>

 </typ:userInfoRequest>
 </soapenv:Body>

</soapenv:Envelope>

RESPONSE

=========
<soapenv:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:MessageID>urn:1d86bd78-c189-11e8-97c6-0050569c0895</wsa:MessageID>

 <wsa:ReplyTo>

 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>
 <wsa:ReferenceParameters>

 <instra:tracking.ecid xmlns:instra="http://xmlns.oracle.com/sca/tracking/1.0">646a055d-9bdb-442e-9737-27b2a7c40e4e-

00069ca5</instra:tracking.ecid>
 <instra:tracking.FlowEventId xmlns:instra="http://xmlns.oracle.com/sca/tracking/1.0">190471</instra:tracking.FlowEventId>

 <instra:tracking.FlowId xmlns:instra="http://xmlns.oracle.com/sca/tracking/1.0">151210</instra:tracking.FlowId>

 <instra:tracking.CorrelationFlowId
xmlns:instra="http://xmlns.oracle.com/sca/tracking/1.0">0000MOLstJm33FGqywZf6G1RFDBL00007T</instra:tracking.CorrelationFlowId>

 <instra:tracking.quiescing.SCAEntityId

xmlns:instra="http://xmlns.oracle.com/sca/tracking/1.0">40004</instra:tracking.quiescing.SCAEntityId>
 </wsa:ReferenceParameters>

 </wsa:ReplyTo>

 <wsa:FaultTo>
 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>

 </wsa:FaultTo>

 </env:Header>
 <env:Body xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <ns2:userInfoResponse xmlns:ns2="http://org.exposed_interfaces.genericws/types">

 <ns2:returnMessage>Rows 1 to 1 from total 1</ns2:returnMessage>
 <ns2:userInfo>

 <ns2:rowNumber>1</ns2:rowNumber>

 <ns2:type>human</ns2:type>
 <ns2:accountId>000-TEST-26</ns2:accountId>

 <ns2:securityLevel>

 <ns2:securityLevelDesc>EMSA Service Administrator</ns2:securityLevelDesc>

 <ns2:securityLevelCode>4</ns2:securityLevelCode>

 </ns2:securityLevel>

 <ns2:status>Active</ns2:status>
 <ns2:disableDate/>

 <ns2:lastUpdate>2018-09-19T13:50:14</ns2:lastUpdate>

 <ns2:personalInfo>
 <ns2:initial>TST</ns2:initial>

European Maritime Safety Agency Identity and Access Management Guide

37

 <ns2:firstName>000-TEST-26</ns2:firstName>

 <ns2:middleName/>

 <ns2:lastName>000-TEST-26</ns2:lastName>

 <ns2:contactDetails>

 <ns2:email>000-TEST-26@emsa.europa.eu</ns2:email>

 <ns2:address>Praca Europa 4 Lisbon Portugal</ns2:address>
 <ns2:phone>123456789</ns2:phone>

 <ns2:fax/>

 <ns2:alertingDetails>
 <ns2:email/>

 <ns2:phone/>

 </ns2:alertingDetails>
 </ns2:contactDetails>

 </ns2:personalInfo>

 <!--The User Country information-->
 <ns2:countryInstitutionInfo>

 <ns2:categoryType>INSTITUTION</ns2:categoryType>

 <ns2:country>EMSA</ns2:country>
 <ns2:country2Code>XX</ns2:country2Code>

 </ns2:countryInstitutionInfo>

 <!--The User organization and operation information-->
 <ns2:organizationOperationsInfo>

 <ns2:organizationDescription>EMSA</ns2:organizationDescription>
 <ns2:organizationCode>ORG_EU00007</ns2:organizationCode>

 <ns2:operations>

 <ns2:operation>
 <ns2:operationDescription>CleanSeaNet</ns2:operationDescription>

 <ns2:operationCode>OPR_CSN</ns2:operationCode>

 </ns2:operation>
 <ns2:operation>

 <ns2:operationDescription>EFCA Atlantic</ns2:operationDescription>

 <ns2:operationCode>OPR_EFCA_ATLANTIC</ns2:operationCode>
 </ns2:operation>

 </ns2:operations>

 </ns2:organizationOperationsInfo>
 <!--The User service and profile information-->

 <ns2:servicesProfilesInfo>

 <ns2:serviceProfileInfo>
 <ns2:serviceDescription>CHD-MARCIS2 - Central Hazmat Database</ns2:serviceDescription>

 <ns2:serviceCode>SRV_CHD_MARCIS2</ns2:serviceCode>

 <ns2:profileDescription>MARCIS2 User</ns2:profileDescription>
 <ns2:profileCode>PRF_MARCIS2_USER</ns2:profileCode>

 </ns2:serviceProfileInfo>

 <ns2:serviceProfileInfo>
 <ns2:serviceDescription>IMS - Integrated Maritime Services</ns2:serviceDescription>

 <ns2:serviceCode>SRV_STAR</ns2:serviceCode>

 <ns2:profileDescription>Access to IMDatE WUP</ns2:profileDescription>
 <ns2:profileCode>PRF_IMDATE_BASIC_VIEWER</ns2:profileCode>

 </ns2:serviceProfileInfo>

 </ns2:servicesProfilesInfo>
 </ns2:userInfo>

 </ns2:userInfoResponse>

 </env:Body>
</soapenv:Envelope>

REST Example

REQUEST

========
http://<SERVER>:<PORT>/UserInfoInterfaceService/UserInfo/000-TEST-26

RESPONSE

========
{
 "type": "human",

 "accountId": "000-TEST-26",

 "securityLevel": {

 "securityLevelDesc": "EMSA Service Administrator",

 "securityLevelCode": "4"

 },
 "status": "Active",

 "lastUpdate": "2018-09-19T13:50:14",

 "personalInfo": {

European Maritime Safety Agency Identity and Access Management Guide

38

 "initial": "TST",

 "firstName": "000-TEST-26",

 "middleName": null,

 "lastName": "000-TEST-26",

 "contactDetails": {

 "email": "000-TEST-26@emsa.europa.eu",
 "address": "Praca Europa 4 Lisbon Portugal",

 "phone": "123456789",

 "fax": null,
 "alertingDetails": {

 "email": null,

 "phone": null
 }

 }

 },
 "countryInstitutionInfo": {

 "categoryType": "INSTITUTION",

 "country": "EMSA",
 "country2Code": "XX"

 },

 "organizationInfo": {
 "organizationDescription": "EMSA",

 "organizationCode": "ORG_EU00007"
 },

 "operationsInfo": [

 {
 "operationDescription": "CleanSeaNet",

 "operationCode": "OPR_CSN"

 },
 {

 "operationDescription": "EFCA Atlantic",

 "operationCode": "OPR_EFCA_ATLANTIC"
 },

],

 "servicesInfo": [
 {

 "serviceDescription": "CHD-MARCIS2 - Central Hazmat Database",

 "serviceCode": "SRV_CHD_MARCIS2"
 },

 {

 "serviceDescription": "IMS - Integrated Maritime Services",
 "serviceCode": "SRV_STAR"

 },

],
 "profilesInfo": [

 {

 "profileDescription": "MARCIS2 User",
 "profileCode": "PRF_MARCIS2_USER"

 },

 {
 "profileDescription": "Access to IMDatE WUP",

 "profileCode": "PRF_IMDATE_BASIC_VIEWER"

 },
],

 "rolesInfo": [

 {
 "roleDescription": "ROL_MARCIS2_USER",

 "roleCode": "ROL_MARCIS2_USER"

 },
 {

 "roleDescription": "Access to IMDatE WUP",

 "roleCode": "ROL_IMDATE_BASIC_VIEWER"
 },

]

}

EMSA secure web application requirements

Version 1.0

Date: 27/09/19

Document History
Version Date Changes Prepared Approved

1.0 27/09/2019 Publish EMSA

Table of Contents

0. OWASP Application Security Verification Standard.. 6
0.1 Application Security Verification Levels .. 6
0.1.1 Level 1 – Automated – low criticality .. 7
0.1.2 Level 2 – Standard .. 7
0.1.3 Level 3 – Business critical .. 7
0.2 The Role of Automated Security Testing Tools .. 8
0.3 The Role of Penetration Testing ... 8

1. V1: Architecture, Design and Threat Modelling Requirements .. 9
1.1 V1.1 Secure Software Development Lifecycle Requirements .. 9
1.2 V1.2 Authentication Architectural Requirements .. 9
1.3 V1.3 Session Management Architectural Requirements .. 9
1.4 V1.4 Access Control Architectural Requirements .. 10
1.5 V1.5 Input and Output Architectural Requirements .. 10
1.6 V1.6 Cryptographic Architectural Requirements .. 10
1.7 V1.7 Errors, Logging and Auditing Architectural Requirements ... 11
1.8 V1.8 Data Protection and Privacy Architectural Requirements .. 11
1.9 V1.9 Communications Architectural Requirements .. 11
1.10 V1.10 Malicious Software Architectural Requirements .. 12
1.11 V1.11 Business Logic Architectural Requirements .. 12
1.12 V1.12 Secure File Upload Architectural Requirements .. 12
1.13 V1.13 API Architectural Requirements ... 13
1.14 V1.14 Configuration Architectural Requirements ... 13

2. V2: Authentication Verification Requirements ... 13
2.1 V2.1 Password Security Requirements .. 13
2.2 V2.2 General Authenticator Requirements ... 15
2.3 V2.3 Authenticator Lifecycle Requirements.. 17
2.4 V2.4 Credential Storage Requirements .. 17
2.5 V2.5 Credential Recovery Requirements ... 18
2.6 V2.6 Look-up Secret Verifier Requirements ... 19
2.7 V2.7 Out of Band Verifier Requirements .. 20
2.8 V2.8 Single or Multi Factor One Time Verifier Requirements .. 20
2.9 V2.9 Cryptographic Software and Devices Verifier Requirements ... 21
2.10 V2.10 Service Authentication Requirements .. 22

3. V3: Session Management Verification Requirements ... 23
3.1 V3.1 Fundamental Session Management Requirements ... 23
3.2 V3.2 Session Binding Requirements .. 23
3.3 V3.3 Session Logout and Timeout Requirements .. 24
3.4 V3.4 Cookie-based Session Management ... 25
3.5 V3.5 Token-based Session Management .. 25
3.6 V3.6 Re-authentication from a Federation or Assertion ... 26
3.7 V3.7 Defenses Against Session Management Exploits ... 26

4. V4: Access Control Verification Requirements .. 27
4.1 V4.1 General Access Control Design ... 27

4.2 V4.2 Operation Level Access Control ... 28
4.3 V4.3 Other Access Control Considerations .. 28

5. V5: Validation, Sanitization and Encoding Verification Requirements.. 29
5.1 V5.1 Input Validation Requirements ... 29
5.2 V5.2 Sanitization and Sandboxing Requirements .. 30
5.3 V5.3 Output encoding and Injection Prevention Requirements.. 31
5.4 V5.4 Memory, String, and Unmanaged Code Requirements ... 32
5.5 V5.5 Deserialization Prevention Requirements .. 33

6. V6: Stored Cryptography Verification Requirements .. 33
6.1 V6.1 Data Classification.. 33
6.2 V6.2 Algorithms .. 34
6.3 V6.3 Random Values .. 35
6.4 V6.4 Secret Management (password management) .. 35

7. V7: Error Handling and Logging Verification Requirements .. 36
7.1 V7.1 Log Content Requirements .. 36
7.2 V7.2 Log Processing Requirements ... 37
7.3 V7.3 Log Protection Requirements ... 37
7.4 V7.4 Error Handling .. 38

8. V8: Data Protection Verification Requirements ... 39
8.1 V8.1 General Data Protection ... 39
8.2 V8.2 Client-side Data Protection .. 40
8.3 V8.3 Sensitive Private Data .. 40

9. V9: Communications Verification Requirements ... 42
9.1 V9.1 Communications Security Requirements ... 42
9.2 V9.2 Server Communications Security Requirements ... 42

10. V10: Malicious Code Verification Requirements .. 43
10.1 V10.1 Code Integrity Controls .. 43
10.2 V10.2 Malicious Code Search .. 44
10.3 V10.3 Deployed Application Integrity Controls ... 45

11. V11: Business Logic Verification Requirements ... 46
11.1 V11.1 Business Logic Security Requirements ... 46

12. V12: File and Resources Verification Requirements ... 47
12.1 V12.1 File Upload Requirements .. 47
12.2 V12.2 File Integrity Requirements .. 47
12.3 V12.3 File execution Requirements .. 48
12.4 V12.4 File Storage Requirements .. 48
12.5 V12.5 File Download Requirements ... 49
12.6 V12.6 SSRF Protection Requirements ... 49

13. V13: API and Web Service Verification Requirements .. 50
13.1 V13.1 Generic Web Service Security Verification Requirements ... 50
13.2 V13.2 RESTful Web Service Verification Requirements .. 50
13.3 V13.3 SOAP Web Service Verification Requirements ... 51
13.4 V13.4 GraphQL and other Web Service Data Layer Security Requirements .. 52

14. V14: Configuration Verification Requirements .. 53
14.1 V14.1 Build ... 53
14.2 V14.2 Dependency ... 53
14.3 V14.3 Unintended Security Disclosure Requirements ... 54
14.4 V14.4 HTTP Security Headers Requirements .. 55
14.5 V14.5 Validate HTTP Request Header Requirements ... 55

4

Acronyms

L1 Level 1

L2 Level 2

L3 Level 3

CSP Credential Service Provider also called an Identity Provider

OTP One-time password

SFA Single factor authenticator

MFA Multi factor authenticator, which includes two or more single factors

CWE Common Weakness Enumeration (CWE) is a community-developed list of common software security

weaknesses

2FA Two-factor authentication

ASLR Address Space Layout Randomization

ASVS Application Security Verification Standard

DAST Dynamic

SAST Static application security testing

OWASP Open Web Application Security Project

SDLC Software development lifecycle

0. OWASP Application Security Verification Standard

Secure development is a requirement for any application or component that is integrated into EMSA ICT

Landscape. OWASP Application Security Verification Standard is an industry standard maintained by

the OWASP foundation that complies with EMSA requirements to verify that specific security measures

are in place in the application or code. This document is based on the OWASP ASVS version 4.

OWASP ASVS has two main goals:

• to help organizations develop and maintain secure applications.

• to allow security service vendors, security tools vendors, and consumers to align their

requirements and offerings.

0.1 Application Security Verification Levels

The Application Security Verification Standard defines three security verification levels, with each level

increasing in depth.

• ASVS Level 1 is for low assurance levels, and is completely penetration testable

• ASVS Level 2 is for applications that contain sensitive data -both commercial or personal-,

which requires protection and is the recommended level for most apps

• ASVS Level 3 is for the most critical applications - applications that perform high value, contain

sensitive data, contain EU confidential data or any application that requires the highest level of

trust.

Each ASVS level contains a list of security requirements. Each of these requirements can also be

mapped to security-specific features and capabilities that must be built into software by developers.

Figure 1 - OWASP Application Security Verification Standard 4.0 Levels

It is encouraged DAST (Dynamic Application Security Testing) and SAST (Static Application Security

Testing) tools being used continuously by the build pipeline to find easy to find security issues that

should never be present.

Automated tools and online scans are unable to complete more than half of the ASVS without human

assistance. If comprehensive test automation for each build is required, then a combination of custom

unit and integration tests, along with build initiated online scans are used. Business logic flaws and

access control testing is only possible using human assistance. These should be turned into unit and

integration tests.

0.1.1 Level 1 – Automated – low criticality

An application achieves ASVS Level 1 if it adequately defends against application security

vulnerabilities that are easy to discover and included in the OWASP Top 10 2017 and other similar

checklists. A Level 1 verification covers OWASP Top 10 - 2017 requirements from A1 to A9. A10

related requirements cannot be pen tested and need from interviews with developers / architects,

screenshots and further evidences. A10 compliance corresponds to V7 Error handling and logging

verification requirements included in this document.

Level 1 is the bare minimum that all applications should strive for. It is also useful as a first step in a

multi-phase effort or when applications do not store or handle sensitive data and therefore do not need

the more rigorous controls of Level 2 or 3. Level 1 controls can be checked either automatically by tools

or simply manually without access to source code. We consider Level 1 the minimum required for all

applications.

Threats to the application will most likely be from attackers who are using simple and low effort

techniques to identify easy-to-find and easy-to-exploit vulnerabilities. This is in contrast to a determined

attacker who will spend focused energy to specifically target the application. If data processed by your

application has high value, you would rarely want to stop at a Level 1 review.

Level 1 is the only level that is completely penetration testable using humans. All others require access

to documentation, source code, configuration, and the people involved in the development process.

However, even if L1 allows "black box" (no documentation and no source) testing to occur, it is not

effective assurance and must stop.

0.1.2 Level 2 – Standard

An application achieves ASVS Level 2 (or Standard) if it adequately defends against most of the risks

associated with software today.

Level 2 ensures that security controls are in place, effective, and used within the application. Level 2 is

typically appropriate for applications that handle significant business-to-business transactions, including

those that implement business-critical or sensitive functions, or process other sensitive assets as

sensitive personal data, or applications where data integrity is a critical facet to protect the business.

Threats to Level 2 applications will typically be skilled and motivated attackers focusing on specific targets

using tools and techniques that are highly practiced and effective at discovering and exploiting

weaknesses within applications.

0.1.3 Level 3 – Business critical

ASVS Level 3 is the highest level of verification within the ASVS. This level is typically reserved for

applications that require significant levels of security verification, such as those that may be found within

areas of critical infrastructure, managing EU classified information, etc.

ASVS Level 3 might be required for applications that perform critical functions, where failure could

significantly impact the organization's operations, and even its survivability. Example guidance on the

application of ASVS Level 3 is provided below. An application achieves ASVS Level 3 (or Advanced) if it

adequately defends against advanced application security vulnerabilities and also demonstrates

principles of good security design.

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

8

An application at ASVS Level 3 requires more in-depth analysis or architecture, coding, and testing than

all the other levels. A secure application is modularized in a meaningful way (to facilitate resiliency,

scalability, and most of all, layers of security), and each module (separated by network connection and/or

physical instance) takes care of its own security responsibilities (defence in depth), that need to be

properly documented. Responsibilities include controls for ensuring confidentiality (e.g. encryption),

integrity (e.g. transactions, input validation), availability, authentication (including between systems), non-

repudiation, authorization, and auditing (logging).

0.2 The Role of Automated Security Testing Tools

The use of automated penetration testing tools is encouraged to provide as much coverage as possible.

It is not possible to fully complete ASVS verification using automated penetration testing tools alone.

Whilst a large majority of requirements in L1 can be performed using automated tests, most requirements

are not amenable to automated penetration testing.

Please note that automated tools are often manually tuned by experts and manual testers often leverage

a wide variety of automated tools.

0.3 The Role of Penetration Testing

L1 is completely black box penetration testable without access to source code, documentation, or

developers. Two logging items, which are required to comply with OWASP Top 10 2017 A10, will require

interviews, screenshots or other evidence collection, just as they do in the OWASP Top 10 2017.

However, testing without access to necessary information is not an ideal method of security verification,

as it misses out on the possibility of reviewing the source, identifying threats and missing controls, and

performing a far more thorough test in a shorter timeframe.

Where possible, access to developers, documentation, code, and access to a test application with non-

production data, is required when performing a L2 or L3 Assessment. Penetration testing done at these

levels requires this level of access, which is call "hybrid reviews" or "hybrid penetration tests".

1. V1: Architecture, Design and Threat Modelling

Requirements

In this chapter, it is covered off the primary aspects of any security architecture: availability,

confidentiality, processing integrity, non-repudiation, and privacy. Each of these security principles

must be built in and be innate to all applications. It is critical to start with developer enablement with

secure coding checklists, training, coding and testing, building, deployment, configuration, and

operations, and finishing with follow up independent testing to assure that all the security controls are

present and functional.

1.1 V1.1 Secure Software Development Lifecycle Requirements

Description L1 L2 L3 CWE

1.1.1 Verify the use of a secure software development lifecycle that addresses

security in all stages of development. (C1)

 ✓ ✓

1.1.2 Verify the use of threat modeling for every design change or sprint

planning to identify threats, plan for countermeasures, facilitate

appropriate risk responses, and guide security testing.

 ✓ ✓ 1053

1.1.3 Verify that all user stories and features contain functional security

constraints, such as "As a user, I should be able to view and edit my

profile. I should not be able to view or edit anyone else's profile"

 ✓ ✓ 1110

1.1.4 Verify documentation and justification of all the application's trust

boundaries, components, and significant data flows.

 ✓ ✓ 1059

1.1.5 Verify definition and security analysis of the application's high-level

architecture and all connected remote services. (C1)

 ✓ ✓ 1059

1.1.6 Verify implementation of centralized, simple (economy of design), vetted,

secure, and reusable security controls to avoid duplicate, missing,

ineffective, or insecure controls. (C10)

 ✓ ✓ 637

1.1.7 Verify availability of a secure coding checklist, security requirements,

guideline, or policy to all developers and testers.

 ✓ ✓ 637

1.2 V1.2 Authentication Architectural Requirements

Description L1 L2 L3 CWE

1.2.1 Verify the use of unique or special low-privilege operating system

accounts for all application components, services, and servers. (C3)

 ✓ ✓ 250

1.2.2 Verify that communications between application components, including

APIs, middleware and data layers, are authenticated. Components

should have the least necessary privileges needed. (C3)

 ✓ ✓ 306

1.2.3 Verify that the application uses a single vetted authentication mechanism

that is known to be secure, can be extended to include strong

authentication, and has sufficient logging and monitoring to detect

account abuse or breaches.

 ✓ ✓ 306

1.2.4 Verify that all authentication pathways and identity management APIs

implement consistent authentication security control strength, such that

there are no weaker alternatives per the risk of the application.

 ✓ ✓ 306

1.3 V1.3 Session Management Architectural Requirements

N/A

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

10

1.4 V1.4 Access Control Architectural Requirements

Description L1 L2 L3 CWE

1.4.1 Verify that trusted enforcement points such as at access control

gateways, servers, and serverless functions enforce access controls.

Never enforce access controls on the client.

 ✓ ✓ 602

1.4.2 Verify that the chosen access control solution is flexible enough to meet

the application's needs.

 ✓ ✓ 284

1.4.3 Verify enforcement of the principle of least privilege in functions, data

files, URLs, controllers, services, and other resources. This implies

protection against spoofing and elevation of privilege.

 ✓ ✓ 272

1.4.4 Verify the application uses a single and well-vetted access control

mechanism for accessing protected data and resources. All requests

must pass through this single mechanism to avoid copy and paste or

insecure alternative paths. (C7)

 ✓ ✓ 284

1.4.5 Verify that attribute or feature-based access control is used whereby the

code checks the user's authorization for a feature/data item rather than

just their role. Permissions should still be allocated using roles. (C7)

 ✓ ✓ 275

1.5 V1.5 Input and Output Architectural Requirements

Description L1 L2 L3 CWE

1.5.1 Verify that input and output requirements clearly define how to handle

and process data based on type, content, and applicable laws,

regulations, and other policy compliance.

 ✓ ✓ 1029

1.5.2 Verify that serialization is not used when communicating with untrusted

clients. If this is not possible, ensure that adequate integrity controls (and

possibly encryption if sensitive data is sent) are enforced to prevent

deserialization attacks including object injection.

 ✓ ✓ 502

1.5.3 Verify that input validation is enforced on a trusted service layer. (C5) ✓ ✓ 602

1.5.4 Verify that output encoding occurs close to or by the interpreter for which

it is intended. (C4)

 ✓ ✓ 116

1.6 V1.6 Cryptographic Architectural Requirements

Description L1 L2 L3 CWE

1.6.1 Verify that there is an explicit policy for management of cryptographic

keys and that a cryptographic key lifecycle follows a key management

standard such as NIST SP 800-57.

 ✓ ✓ 320

1.6.2 Verify that consumers of cryptographic services protect key material and

other secrets by using key vaults or API based alternatives.

 ✓ ✓ 320

1.6.3 Verify that all keys and passwords are replaceable and are part of a well-

defined process to re-encrypt sensitive data.

 ✓ ✓ 320

1.6.4 Verify that symmetric keys, passwords, or API secrets generated by or

shared with clients are used only in protecting low risk secrets, such as

 ✓ ✓ 320

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

Description L1 L2 L3 CWE

encrypting local storage, or temporary ephemeral uses such as

parameter obfuscation. Sharing secrets with clients is clear-text

equivalent and architecturally should be treated as such.

1.7 V1.7 Errors, Logging and Auditing Architectural Requirements

Description L1 L2 L3 CWE

1.7.1 Verify that a common logging format and

approach is used across the system. (C9)

 ✓ ✓ 1009

1.7.2 Verify that logs are securely transmitted to a

preferably remote system for analysis, detection,

alerting, and escalation. (C9)

 ✓ ✓

1.8 V1.8 Data Protection and Privacy Architectural Requirements

Description L1 L2 L3 CWE

1.8.1 Verify that all sensitive data is identified and

classified into protection levels.

 ✓ ✓

1.8.2 Verify that all protection levels have an

associated set of protection requirements, such

as encryption requirements, integrity

requirements, retention, privacy and other

confidentiality requirements, and that these are

applied in the architecture.

 ✓ ✓

1.9 V1.9 Communications Architectural Requirements

Description L1 L2 L3 CWE

1.9.1 Verify the application encrypts communications

between components, particularly when these

components are in different containers, systems,

sites, or cloud providers. (C3)

 ✓ ✓ 319

1.9.2 Verify that application components verify the

authenticity of each side in a communication link

to prevent person-in-the-middle attacks. For

 ✓ ✓ 295

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

12

example, application components should

validate TLS certificates and chains.

1.10 V1.10 Malicious Software Architectural Requirements

Description L1 L2 L3 CWE

1.10.1 Verify that a source code control system is in

use, with procedures to ensure that check-ins

are accompanied by issues or change tickets.

The source code control system should have

access control and identifiable users to allow

traceability of any changes.

 ✓ ✓ 284

1.11 V1.11 Business Logic Architectural Requirements

Description L1 L2 L3 CWE

1.11.1 Verify the definition and documentation of all

application components in terms of the

business or security functions they provide.

 ✓ ✓ 1059

1.11.2 Verify that all high-value business logic flows,

including authentication, session management

and access control, do not share

unsynchronized state.

 ✓ ✓ 362

1.11.3 Verify that all high-value business logic flows,

including authentication, session management

and access control are thread safe and

resistant to time-of-check and time-of-use race

conditions.

 ✓ 367

1.12 V1.12 Secure File Upload Architectural Requirements

Description L1 L2 L3 CWE

1.12.1 Verify that user-uploaded files are stored

outside of the web root.

 ✓ ✓ 552

1.12.2 Verify that user-uploaded files - if required to be

displayed or downloaded from the application -

are served by either octet stream downloads, or

from an unrelated domain, such as a cloud file

storage bucket. Implement a suitable content

 ✓ ✓ 646

security policy to reduce the risk from XSS

vectors or other attacks from the uploaded file.

1.13 V1.13 API Architectural Requirements

This is a placeholder for future architectural requirements.

1.14 V1.14 Configuration Architectural Requirements

Description L1 L2 L3 CWE

1.14.1 Verify the segregation of components of

differing trust levels through well-defined

security controls, firewall rules, API gateways,

reverse proxies, cloud-based security groups,

or similar mechanisms.

 ✓ ✓ 923

1.14.2 Verify that if deploying binaries to untrusted

devices makes use of binary signatures, trusted

connections, and verified endpoints.

 ✓ ✓ 494

1.14.3 Verify that the build pipeline warns of out-of-

date or insecure components and takes

appropriate actions.

 ✓ ✓ 1104

1.14.4 Verify that the build pipeline contains a build

step to automatically build and verify the secure

deployment of the application, particularly if the

application infrastructure is software defined,

such as cloud environment build scripts.

 ✓ ✓

1.14.5 Verify that application deployments adequately

sandbox, containerize and/or isolate at the

network level to delay and deter attackers from

attacking other applications, especially when

they are performing sensitive or dangerous

actions such as deserialization. (C5)

 ✓ ✓ 265

1.14.6 Verify the application does not use

unsupported, insecure, or deprecated client-

side technologies such as NSAPI plugins,

Flash, Shockwave, ActiveX, Silverlight, NACL,

or client-side Java applets.

 ✓ ✓ 477

2. V2: Authentication Verification Requirements

2.1 V2.1 Password Security Requirements

This type of authenticator is considered "something you know".

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

14

Description L1 L2 L3 CWE

NIST

§

2.1.1 Verify that user set passwords are

at least 12 characters in length.

(C6)

✓ ✓ ✓ 521 5.1.1.2

2.1.2 Verify that passwords 64

characters or longer are

permitted. (C6)

✓ ✓ ✓ 521 5.1.1.2

2.1.3 Verify that passwords can contain

spaces and truncation is not

performed. Consecutive multiple

spaces MAY optionally be

coalesced. (C6)

✓ ✓ ✓ 521 5.1.1.2

2.1.4 Verify that Unicode characters are

permitted in passwords. A single

Unicode code point is considered

a character, so 12 emoji or 64

kanji characters should be valid

and permitted.

✓ ✓ ✓ 521 5.1.1.2

2.1.5 Verify users can change their

password.
✓ ✓ ✓ 620 5.1.1.2

2.1.6 Verify that password change

functionality requires the user's

current and new password.

✓ ✓ ✓ 620 5.1.1.2

2.1.7 Verify that passwords submitted

during account registration, login,

and password change are

checked against a set of

breached passwords either locally

(such as the top 1,000 or 10,000

most common passwords which

match the system's password

policy) or using an external API. If

using an API a zero knowledge

proof or other mechanism should

be used to ensure that the plain

text password is not sent or used

in verifying the breach status of

the password. If the password is

breached, the application must

require the user to set a new non-

breached password. (C6)

✓ ✓ ✓ 521 5.1.1.2

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

Description L1 L2 L3 CWE

NIST

§

2.1.8 Verify that a password strength

meter is provided to help users

set a stronger password.

✓ ✓ ✓ 521 5.1.1.2

2.1.9 Verify that there are no password

composition rules limiting the type

of characters permitted. There

should be no requirement for

upper or lower case or numbers

or special characters. (C6)

✓ ✓ ✓ 521 5.1.1.2

2.1.10 Verify that there are no periodic

credential rotation or password

history requirements.

✓ ✓ ✓ 263 5.1.1.2

2.1.11 Verify that "paste" functionality,

browser password helpers, and

external password managers are

permitted.

✓ ✓ ✓ 521 5.1.1.2

2.1.12 Verify that the user can choose to

either temporarily view the entire

masked password, or temporarily

view the last typed character of

the password on platforms that do

not have this as native

functionality.

✓ ✓ ✓ 521 5.1.1.2

2.2 V2.2 General Authenticator Requirements

Description L1 L2 L3 CWE NIST §

2.2.1 Verify that anti-automation

controls are effective at mitigating

breached credential testing, brute

force, and account lockout

attacks. Such controls include

blocking the most common

breached passwords, soft

lockouts, rate limiting, CAPTCHA,

ever increasing delays between

attempts, IP address restrictions,

or risk-based restrictions such as

location, first login on a device,

recent attempts to unlock the

account, or similar. Verify that no

more than 100 failed attempts per

✓ ✓ ✓ 307 5.2.2 /

5.1.1.2 /

5.1.4.2 /

5.1.5.2

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

16

Description L1 L2 L3 CWE NIST §

hour is possible on a single

account.

2.2.2 Verify that the use of weak

authenticators (such as SMS and

email) is limited to secondary

verification and transaction

approval and not as a

replacement for more secure

authentication methods. Verify

that stronger methods are offered

before weak methods, users are

aware of the risks, or that proper

measures are in place to limit the

risks of account compromise.

✓ ✓ ✓ 304 5.2.10

2.2.3 Verify that secure notifications are

sent to users after updates to

authentication details, such as

credential resets, email or

address changes, logging in from

unknown or risky locations. The

use of push notifications - rather

than SMS or email - is preferred,

but in the absence of push

notifications, SMS or email is

acceptable as long as no

sensitive information is disclosed

in the notification.

✓ ✓ ✓ 620

2.2.4 Verify impersonation resistance

against phishing, such as the use

of multi-factor authentication,

cryptographic devices with intent

(such as connected keys with a

push to authenticate), or at higher

AAL levels, client-side certificates.

 ✓ 308 5.2.5

2.2.5 Verify that where a credential

service provider (CSP) and the

application verifying

authentication are separated,

mutually authenticated TLS is in

place between the two endpoints.

 ✓ 319 5.2.6

2.2.6 Verify replay resistance through

the mandated use of OTP

devices, cryptographic

authenticators, or lookup codes.

 ✓ 308 5.2.8

2.2.7 Verify intent to authenticate by

requiring the entry of an OTP

token or user-initiated action such

 ✓ 308 5.2.9

Description L1 L2 L3 CWE NIST §

as a button press on a FIDO

hardware key.

2.3 V2.3 Authenticator Lifecycle Requirements

Authenticators are passwords, soft tokens, hardware tokens, and biometric devices.

Note: Passwords should be checked for being breached.

Description L1 L2 L3 CWE NIST §

2.3.1 Verify system generated initial

passwords or activation codes

SHOULD be securely randomly

generated, SHOULD be at least 6

characters long, and MAY contain

letters and numbers, and expire

after a short period of time. These

initial secrets must not be

permitted to become the long-term

password.

✓ ✓ ✓ 330 5.1.1.2

/ A.3

2.3.2 Verify that enrolment and use of

subscriber-provided authentication

devices are supported, such as a

U2F or FIDO tokens.

 ✓ ✓ 308 6.1.3

2.3.3 Verify that renewal instructions are

sent with sufficient time to renew

time bound authenticators.

 ✓ ✓ 287 6.1.4

2.4 V2.4 Credential Storage Requirements

Architects and developers should adhere to this section when building or refactoring code. This

section can only be fully verified using source code review or through secure unit or integration

tests. Penetration testing cannot identify any of these issues.

This section cannot be penetration tested, so controls are not marked as L1. However, this

section is of the utmost importance to the security of credentials if they are stolen.

Description L1 L2 L3 CWE

NIST

§

2.4.1 Verify that passwords are stored in

a form that is resistant to offline

attacks. Passwords SHALL be

salted and hashed using an

approved one-way key derivation

or password hashing function. Key

 ✓ ✓ 916 5.1.1.2

18

derivation and password hashing

functions take a password, a salt,

and a cost factor as inputs when

generating a password hash. (C6)

2.4.2 Verify that the salt is at least 32 bits

in length and be chosen arbitrarily

to minimize salt value collisions

among stored hashes. For each

credential, a unique salt value and

the resulting hash SHALL be

stored. (C6)

 ✓ ✓ 916 5.1.1.2

2.4.3 Verify that if PBKDF2 is used, the

iteration count SHOULD be as

large as verification server

performance will allow, typically at

least 100,000 iterations. (C6)

 ✓ ✓ 916 5.1.1.2

2.4.4 Verify that if bcrypt is used, the

work factor SHOULD be as large

as verification server performance

will allow, typically at least 13. (C6)

 ✓ ✓ 916 5.1.1.2

2.4.5 Verify that an additional iteration of

a key derivation function is

performed, using a salt value that

is secret and known only to the

verifier. Generate the salt value

using an approved random bit

generator and provide at least the

minimum security strength

specified in the latest revision of

EMSA Policy (or SP 800-131A if

not available). The secret salt value

SHALL be stored separately from

the hashed passwords (e.g., in a

specialized device like a hardware

security module).

 ✓ ✓ 916 5.1.1.2

2.5 V2.5 Credential Recovery Requirements

Description L1 L2 L3 CWE NIST §

2.5.1 Verify that a system generated

initial activation or recovery secret

is not sent in clear text to the user.

(C6)

✓ ✓ ✓ 640 5.1.1.2

2.5.2 Verify password hints or

knowledge-based authentication
✓ ✓ ✓ 640 5.1.1.2

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

Description L1 L2 L3 CWE NIST §

(so-called "secret questions") are

not present.

2.5.3 Verify password credential

recovery does not reveal the

current password in any way. (C6)

✓ ✓ ✓ 640 5.1.1.2

2.5.4 Verify shared or default accounts

are not present (e.g. "root",

"admin", or "sa").

✓ ✓ ✓ 16 5.1.1.2

/ A.3

2.5.5 Verify that if an authentication

factor is changed or replaced, that

the user is notified of this event.

✓ ✓ ✓ 304 6.1.2.3

2.5.6 Verify forgotten password, and

other recovery paths use a secure

recovery mechanism, such as

TOTP or other soft token, mobile

push, or another offline recovery

mechanism. (C6)

✓ ✓ ✓ 640 5.1.1.2

2.5.7 Verify that if OTP or multi-factor

authentication factors are lost, that

evidence of identity proofing is

performed at the same level as

during enrollment.

 ✓ ✓ 308 6.1.2.3

2.6 V2.6 Look-up Secret Verifier Requirements

Look up secrets are pre-generated lists of secret codes, similar to Transaction Authorization Numbers

(TAN), social media recovery codes, or a grid containing a set of random values. These are

distributed securely to users. These lookup codes are used once, and once all used, the lookup

secret list is discarded. This type of authenticator is considered "something you have".

Description L1 L2 L3 CWE

NIST

§

2.6.1 Verify that lookup secrets can be

used only once.

 ✓ ✓ 308 5.1.2.2

2.6.2 Verify that lookup secrets have

sufficient randomness (112 bits of

entropy), or if less than 112 bits of

entropy, salted with a unique and

random 32-bit salt and hashed with

an approved one-way hash.

 ✓ ✓ 330 5.1.2.2

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

20

2.6.3 Verify that lookup secrets are

resistant to offline attacks, such as

predictable values.

 ✓ ✓ 310 5.1.2.2

2.7 V2.7 Out of Band Verifier Requirements

Secure out of band authenticators are physical devices that can communicate with the verifier

over a secure secondary channel. Examples include push notifications to mobile devices. This

type of authenticator is considered "something you have".

Description L1 L2 L3 CWE

NIST

§

2.7.1 Verify that clear text out of band

authenticators, such as SMS or

PSTN, are not offered by default,

and stronger alternatives such as

push notifications are offered first.

✓ ✓ ✓ 287 5.1.3.2

2.7.2 Verify that the out of band verifier

expires out of band authentication

requests, codes, or tokens after 10

minutes.

✓ ✓ ✓ 287 5.1.3.2

2.7.3 Verify that the out of band verifier

authentication requests, codes, or

tokens are only usable once, and

only for the original authentication

request.

✓ ✓ ✓ 287 5.1.3.2

2.7.4 Verify that the out of band

authenticator and verifier

communicates over a secure

independent channel.

✓ ✓ ✓ 523 5.1.3.2

2.7.5 Verify that the out of band verifier

retains only a hashed version of

the authentication code.

 ✓ ✓ 256 5.1.3.2

2.7.6 Verify that the initial authentication

code is generated by a secure

random number generator,

containing at least 20 bits of

entropy (typically a six digital

random number is sufficient).

 ✓ ✓ 310 5.1.3.2

2.8 V2.8 Single or Multi Factor One Time Verifier Requirements

Single factor one-time passwords (OTPs) are physical or soft tokens that display a continually

changing pseudo-random one time challenge.

Description L1 L2 L3 CWE NIST §

2.8.1 Verify that time-based OTPs have

a defined lifetime before expiring.
✓ ✓ ✓ 613 5.1.4.2

/

5.1.5.2

2.8.2 Verify that symmetric keys used to

verify submitted OTPs are highly

protected, such as by using a

hardware security module or

secure operating system based

key storage.

 ✓ ✓ 320 5.1.4.2

/

5.1.5.2

2.8.3 Verify that approved cryptographic

algorithms are used in the

generation, seeding, and

verification.

 ✓ ✓ 326 5.1.4.2

/

5.1.5.2

2.8.4 Verify that time-based OTP can

be used only once within the

validity period.

 ✓ ✓ 287 5.1.4.2

/

5.1.5.2

2.8.5 Verify that if a time-based multi

factor OTP token is re-used during

the validity period, it is logged and

rejected with secure notifications

being sent to the holder of the

device.

 ✓ ✓ 287 5.1.5.2

2.8.6 Verify physical single factor OTP

generator can be revoked in case

of theft or other loss. Ensure that

revocation is immediately effective

across logged in sessions,

regardless of location.

 ✓ ✓ 613 5.2.1

2.8.7 Verify that biometric

authenticators are limited to use

only as secondary factors in

conjunction with either something

you have and something you

know.

 ✓ 308 5.2.3

2.9 V2.9 Cryptographic Software and Devices Verifier Requirements

Cryptographic security keys are smart cards or FIDO keys, where the user has to plug in or pair

the cryptographic device to the computer to complete authentication. Verifiers send a challenge

nonce to the cryptographic devices or software, and the device or software calculates a

response based upon a securely stored cryptographic key.

22

Description L1 L2 L3 CWE

NIST

§

2.9.1 Verify that cryptographic keys used

in verification are stored securely

and protected against disclosure,

such as using a TPM or HSM, or

an OS service that can use this

secure storage.

 ✓ ✓ 320 5.1.7.2

2.9.2 Verify that the challenge nonce is

at least 64 bits in length, and

statistically unique or unique over

the lifetime of the cryptographic

device.

 ✓ ✓ 330 5.1.7.2

2.9.3 Verify that approved cryptographic

algorithms are used in the

generation, seeding, and

verification.

 ✓ ✓ 327 5.1.7.2

2.10 V2.10 Service Authentication Requirements

This section is not penetration testable, so does not have any L1 requirements. However, if

used in an architecture, coding or secure code review, please assume that software (just as

Java Key Store) is the minimum requirement at L1. Clear text storage of secrets is not

acceptable under any circumstances.

Description L1 L2 L3 CWE

NIST

§

2.10.1 Verify that integration

secrets do not rely on

unchanging passwords,

such as API keys or

shared privileged

accounts.

 OS

assisted

HSM 287 5.1.1.1

2.10.2 Verify that if passwords

are required, the

credentials are not a

default account.

 OS

assisted

HSM 255 5.1.1.1

2.10.3 Verify that passwords are

stored with sufficient

protection to prevent

offline recovery attacks,

including local system

access.

 OS

assisted

HSM 522 5.1.1.1

2.10.4 Verify passwords,

integrations with

databases and third-party

systems, seeds and

internal secrets, and API

keys are managed

securely and not included

in the source code or

stored within source code

repositories. Such

storage SHOULD resist

offline attacks. The use of

a secure software key

store (L1), hardware

trusted platform module

(TPM), or a hardware

security module (L3) is

recommended for

password storage.

 OS

assisted

HSM 798

3. V3: Session Management Verification

Requirements

One of the core components of any web-based application or stateful API is the mechanism by which it

controls and maintains the state for a user or device interacting with it. Session management changes a

stateless protocol to stateful, which is critical for differentiating different users or devices.

To ensure that a verified application satisfies the following high-level session management requirements:

• Sessions are unique to each individual and cannot be guessed or shared.

• Sessions are invalidated when no longer required and timed out during periods of inactivity.

3.1 V3.1 Fundamental Session Management Requirements

Description L1 L2 L3 CWE

NIST

§

3.1.1 Verify the application never reveals

session tokens in URL parameters

or error messages.

✓ ✓ ✓ 598

3.2 V3.2 Session Binding Requirements

Description L1 L2 L3 CWE

NIST

§

24

3.2.1 Verify the application generates a

new session token on user

authentication. (C6)

✓ ✓ ✓ 384 7.1

3.2.2 Verify that session tokens possess

at least 64 bits of entropy. (C6)
✓ ✓ ✓ 331 7.1

3.2.3 Verify the application only stores

session tokens in the browser using

secure methods such as

appropriately secured cookies (see

section 3.4) or HTML 5 session

storage.

✓ ✓ ✓ 539 7.1

3.2.4 Verify that session token are

generated using approved

cryptographic algorithms. (C6)

 ✓ ✓ 331 7.1

TLS or another secure transport channel is mandatory for session management. This is covered

off in the Communications Security chapter.

3.3 V3.3 Session Logout and Timeout Requirements

Description L1 L2 L3 CWE

NIST

§

3.3.1 Verify that logout and expiration

invalidate the session token, such

that the back button or a

downstream relying party does not

resume an authenticated session,

including across relying parties. (C6)

✓ ✓ ✓ 613 7.1

3.3.2 If authenticators permit users to

remain logged in, verify that re-

authentication occurs periodically

both when actively used or after an

idle period (C6) – check EMSA

Policy for periods.

✓ ✓ ✓ 613 7.2

3.3.3 Verify that the application terminates

all other active sessions after a

successful password change, and

that this is effective across the

application, federated login (if

present), and any relying parties.

 ✓ ✓ 613

3.3.4 Verify that users are able to view

and log out of any or all currently

active sessions and devices.

 ✓ ✓ 613 7.1

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

3.4 V3.4 Cookie-based Session Management

Description L1 L2 L3 CWE

NIST

§

3.4.1 Verify that cookie-based session

tokens have the 'Secure' attribute

set. (C6)

✓ ✓ ✓ 614 7.1.1

3.4.2 Verify that cookie-based session

tokens have the 'HttpOnly' attribute

set. (C6)

✓ ✓ ✓ 1004 7.1.1

3.4.3 Verify that cookie-based session

tokens utilize the 'SameSite' attribute

to limit exposure to cross-site

request forgery attacks. (C6)

✓ ✓ ✓ 16 7.1.1

3.4.4 Verify that cookie-based session

tokens use "__Host-" prefix (see

references) to provide session

cookie confidentiality.

✓ ✓ ✓ 16 7.1.1

3.4.5 Verify that if the application is

published under a domain name with

other applications that set or use

session cookies that might override

or disclose the session cookies, set

the path attribute in cookie-based

session tokens using the most

precise path possible. (C6)

✓ ✓ ✓ 16 7.1.1

3.5 V3.5 Token-based Session Management

Token-based session management includes JWT, OAuth, SAML, and API keys. Of these, API

keys are known to be weak and should not be used in new code.

Description L1 L2 L3 CWE

NIST

§

3.5.1 Verify the application does not treat

OAuth and refresh tokens — on their

own — as the presence of the

subscriber and allows users to

terminate trust relationships with

linked applications.

 ✓ ✓ 290 7.1.2

3.5.2 Verify the application uses session

tokens rather than static API secrets

 ✓ ✓ 798

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

26

and keys, except with legacy

implementations.

3.5.3 Verify that stateless session tokens

use digital signatures, encryption,

and other countermeasures to

protect against tampering,

enveloping, replay, null cipher, and

key substitution attacks.

 ✓ ✓ 345

3.6 V3.6 Re-authentication from a Federation or Assertion

This section relates to those writing relying party (RP) or credential service provider (CSP)

code. If relying on code implementing these features, ensure that these issues are handled

correctly.

Description L1 L2 L3 CWE

NIST

§

3.6.1 Verify that relying parties specify the

maximum authentication time to

CSPs and that CSPs re-authenticate

the subscriber if they haven't used a

session within that period.

 ✓ 613 7.2.1

3.6.2 Verify that CSPs inform relying

parties of the last authentication

event, to allow RPs to determine if

they need to re-authenticate the

user.

 ✓ 613 7.2.1

3.7 V3.7 Defenses Against Session Management Exploits

There are a small number of session management attacks, some related to the user experience

(UX) of sessions. This section provides leading guidance on deterring, delaying and detecting

session management attacks using code.

Description of the half-open Attack

In early 2018, several financial institutions were compromised using what the attackers called

"half-open attacks". This term has stuck in the industry. The attackers struck multiple institutions

with different proprietary code bases, and indeed it seems different code bases within the same

institutions. The half-open attack is exploiting a design pattern flaw commonly found in many

existing authentication, session management and access control systems.

Attackers start a half-open attack by attempting to lock, reset, or recover a credential. A popular

session management design pattern re-uses user profile session objects/models between

unauthenticated, half-authenticated (password resets, forgot username), and fully authenticated

code. This design pattern populates a valid session object or token containing the victim's

profile, including password hashes and roles. If access control checks in controllers or routers

does not correctly verify that the user is fully logged in, the attacker will be able to act as the

user. Attacks could include changing the user's password to a known value, update the email

address to perform a valid password reset, disable multi-factor authentication or enrol a new

MFA device, reveal or change API keys, and so on.

Description L1 L2 L3 CWE

NIST

§

3.7.1 Verify the application ensures a valid

login session or requires re-

authentication or secondary

verification before allowing any

sensitive transactions or account

modifications.

✓ ✓ ✓ 778

4. V4: Access Control Verification Requirements

Authorization is the concept of allowing access to resources only to those permitted to use them. Ensure

that a verified application satisfies the following high-level requirements:

• Persons accessing resources hold valid credentials to do so.

• Users are associated with a well-defined set of roles and privileges.

• Role and permission metadata is protected from replay or tampering.

4.1 V4.1 General Access Control Design

Description L1 L2 L3 CWE

4.1.1 Verify that the application enforces access

control rules on a trusted service layer,

especially if client-side access control is present

and could be bypassed.

✓ ✓ ✓ 602

4.1.2 Verify that all user and data attributes and policy

information used by access controls cannot be

manipulated by end users unless specifically

authorized.

✓ ✓ ✓ 639

4.1.3 Verify that the principle of least privilege exists -

users should only be able to access functions,

data files, URLs, controllers, services, and other

resources, for which they possess specific

authorization. This implies protection against

spoofing and elevation of privilege. (C7)

✓ ✓ ✓ 285

4.1.4 Verify that the principle of deny by default exists

whereby new users/roles start with minimal or no

permissions and users/roles do not receive

access to new features until access is explicitly

assigned. (C7)

✓ ✓ ✓ 276

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

28

4.1.5 Verify that access controls fail securely including

when an exception occurs. (C10)
✓ ✓ ✓ 285

4.2 V4.2 Operation Level Access Control

Description L1 L2 L3 CWE

4.2.1 Verify that sensitive data and APIs are protected

against direct object attacks targeting creation,

reading, updating and deletion of records, such

as creating or updating someone else's record,

viewing everyone's records, or deleting all

records.

✓ ✓ ✓ 639

4.2.2 Verify that the application or framework enforces

a strong anti-CSRF mechanism to protect

authenticated functionality, and effective anti-

automation or anti-CSRF protects

unauthenticated functionality.

✓ ✓ ✓ 352

4.3 V4.3 Other Access Control Considerations

Description L1 L2 L3 CWE

4.3.1 Verify administrative interfaces use appropriate

multi-factor authentication to prevent

unauthorized use.

✓ ✓ ✓ 419

4.3.2 Verify that directory browsing is disabled unless

deliberately desired. Additionally, applications

should not allow discovery or disclosure of file or

directory metadata, such as Thumbs.db,

.DS_Store, .git or .svn folders.

✓ ✓ ✓ 548

4.3.3 Verify the application has additional

authorization (such as step up or adaptive

authentication) for lower value systems, and / or

segregation of duties for high value applications

to enforce anti-fraud controls as per the risk of

application and past fraud.

 ✓ ✓ 732

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

5. V5: Validation, Sanitization and Encoding

Verification Requirements

The most common web application security weakness is the failure to properly validate input coming

from the client or the environment before directly using it without any output encoding. This

weakness leads to almost all of the significant vulnerabilities in web applications, such as Cross-Site

Scripting (XSS), SQL injection, interpreter injection, locale/Unicode attacks, file system attacks, and

buffer overflows.

To ensure that a verified application satisfies the following high-level requirements:

• Input validation and output encoding architecture have an agreed pipeline to prevent injection

attacks.

• Input data is strongly typed, validated, range or length checked, or at worst, sanitized or

filtered.

• Output data is encoded or escaped as per the context of the data as close to the interpreter

as possible.

With modern web application architecture, it is difficult to provide robust input validation in certain

scenarios, so the use of safer API such as parameterized queries, auto-escaping templating

frameworks, or carefully chosen output encoding is critical to the security of the application.

5.1 V5.1 Input Validation Requirements

Properly implemented input validation controls, using positive whitelisting and strong data

typing, can eliminate more than 90% of all injection attacks. Length and range checks can

reduce this further. Building in secure input validation is required during application architecture,

design, coding, and unit and integration testing. Although many of these items cannot be found

in penetration tests, the results of not implementing them are usually found in V5.3 - Output

encoding and Injection Prevention Requirements. Developers and secure code reviewers are

required to treat this section as for L1.

Description L1 L2 L3 CWE

5.1.1 Verify that the application has defenses against

HTTP parameter pollution attacks, particularly if

the application framework makes no distinction

about the source of request parameters (GET,

POST, cookies, headers, or environment

variables).

✓ ✓ ✓ 235

5.1.2 Verify that frameworks protect against mass

parameter assignment attacks, or that the

application has countermeasures to protect

against unsafe parameter assignment, such as

marking fields private or similar. (C5)

✓ ✓ ✓ 915

5.1.3 Verify that all input (HTML form fields, REST

requests, URL parameters, HTTP headers,
✓ ✓ ✓ 20

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

30

cookies, batch files, RSS feeds, etc) is validated

using positive validation (whitelisting). (C5)

5.1.4 Verify that structured data is strongly typed and

validated against a defined schema including

allowed characters, length and pattern (e.g.

credit card numbers or telephone, or validating

that two related fields are reasonable, such as

checking that suburb and zip/postcode match).

(C5)

✓ ✓ ✓ 20

5.1.5 Verify that URL redirects and forwards only allow

whitelisted destinations, or show a warning when

redirecting to potentially untrusted content.

✓ ✓ ✓ 601

5.2 V5.2 Sanitization and Sandboxing Requirements

Description L1 L2 L3 CWE

5.2.1 Verify that all untrusted HTML input from

WYSIWYG editors or similar is properly sanitized

with an HTML sanitizer library or framework

feature. (C5)

✓ ✓ ✓ 116

5.2.2 Verify that unstructured data is sanitized to

enforce safety measures such as allowed

characters and length.

✓ ✓ ✓ 138

5.2.3 Verify that the application sanitizes user input

before passing to mail systems to protect against

SMTP or IMAP injection.

✓ ✓ ✓ 147

5.2.4 Verify that the application avoids the use of

eval() or other dynamic code execution features.

Where there is no alternative, any user input

being included must be sanitized or sandboxed

before being executed.

✓ ✓ ✓ 95

5.2.5 Verify that the application protects against

template injection attacks by ensuring that any

user input being included is sanitized or

sandboxed.

✓ ✓ ✓ 94

5.2.6 Verify that the application protects against SSRF

attacks, by validating or sanitizing untrusted data

or HTTP file metadata, such as filenames and

URL input fields, use whitelisting of protocols,

domains, paths and ports.

✓ ✓ ✓ 918

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

5.2.7 Verify that the application sanitizes, disables, or

sandboxes user-supplied SVG scriptable

content, especially as they relate to XSS

resulting from inline scripts, and foreignObject.

✓ ✓ ✓ 159

5.2.8 Verify that the application sanitizes, disables, or

sandboxes user-supplied scriptable or

expression template language content, such as

Markdown, CSS or XSL stylesheets, BBCode, or

similar.

✓ ✓ ✓ 94

5.3 V5.3 Output encoding and Injection Prevention Requirements

Output encoding close or adjacent to the interpreter in use is critical to the security of any

application. Typically, output encoding is not persisted, but used to render the output safe in the

appropriate output context for immediate use. Failing to output encode will result in an insecure,

injectable, and unsafe application.

Description L1 L2 L3 CWE

5.3.1 Verify that output encoding is relevant for the

interpreter and context required. For example,

use encoders specifically for HTML values,

HTML attributes, JavaScript, URL Parameters,

HTTP headers, SMTP, and others as the

context requires, especially from untrusted

inputs (e.g. names with Unicode or

apostrophes, such as ねこ or O'Hara). (C4)

✓ ✓ ✓ 116

5.3.2 Verify that output encoding preserves the

user's chosen character set and locale, such

that any Unicode character point is valid and

safely handled. (C4)

✓ ✓ ✓ 176

5.3.3 Verify that context-aware, preferably automated

- or at worst, manual - output escaping protects

against reflected, stored, and DOM based XSS.

(C4)

✓ ✓ ✓ 79

5.3.4 Verify that data selection or database queries

(e.g. SQL, HQL, ORM, NoSQL) use

parameterized queries, ORMs, entity

frameworks, or are otherwise protected from

database injection attacks. (C3)

✓ ✓ ✓ 89

5.3.5 Verify that where parameterized or safer

mechanisms are not present, context-specific

output encoding is used to protect against

injection attacks, such as the use of SQL

escaping to protect against SQL injection. (C3,

C4)

✓ ✓ ✓ 89

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

32

Description L1 L2 L3 CWE

5.3.6 Verify that the application projects against

JavaScript or JSON injection attacks, including

for eval attacks, remote JavaScript includes,

CSP bypasses, DOM XSS, and JavaScript

expression evaluation. (C4)

✓ ✓ ✓ 830

5.3.7 Verify that the application protects against

LDAP Injection vulnerabilities, or that specific

security controls to prevent LDAP Injection

have been implemented. (C4)

✓ ✓ ✓ 943

5.3.8 Verify that the application protects against OS

command injection and that operating system

calls use parameterized OS queries or use

contextual command line output encoding. (C4)

✓ ✓ ✓ 78

5.3.9 Verify that the application protects against

Local File Inclusion (LFI) or Remote File

Inclusion (RFI) attacks.

✓ ✓ ✓ 829

5.3.10 Verify that the application protects against

XPath injection or XML injection attacks. (C4)
✓ ✓ ✓ 643

Note: Using parameterized queries or escaping SQL is not always sufficient; table and column

names, ORDER BY and so on, cannot be escaped. The inclusion of escaped user-supplied data

in these fields results in failed queries or SQL injection.

Note: The SVG format explicitly allows ECMA script in almost all contexts, so it may not be

possible to block all SVG XSS vectors completely. If SVG upload is required, recommendation is

to either serving these uploaded files as text/plain or using a separate user supplied content

domain to prevent successful XSS from taking over the application.

5.4 V5.4 Memory, String, and Unmanaged Code Requirements

The following requirements will only apply when the application uses a systems language or

unmanaged code.

Description L1 L2 L3 CWE

5.4.1 Verify that the application uses memory-safe

string, safer memory copy and pointer arithmetic

to detect or prevent stack, buffer, or heap

overflows.

 ✓ ✓ 120

5.4.2 Verify that format strings do not take potentially

hostile input, and are constant.

 ✓ ✓ 134

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

5.4.3 Verify that sign, range, and input validation

techniques are used to prevent integer

overflows.

 ✓ ✓ 190

5.5 V5.5 Deserialization Prevention Requirements

Description L1 L2 L3 CWE

5.5.1 Verify that serialized objects use integrity checks

or are encrypted to prevent hostile object

creation or data tampering. (C5)

✓ ✓ ✓ 502

5.5.2 Verify that the application correctly restricts XML

parsers to only use the most restrictive

configuration possible and to ensure that unsafe

features such as resolving external entities are

disabled to prevent XXE.

✓ ✓ ✓ 611

5.5.3 Verify that deserialization of untrusted data is

avoided or is protected in both custom code and

third-party libraries (such as JSON, XML and

YAML parsers).

✓ ✓ ✓ 502

5.5.4 Verify that when parsing JSON in browsers or

JavaScript-based backends, JSON.parse is

used to parse the JSON document. Do not use

eval() to parse JSON.

✓ ✓ ✓ 95

6. V6: Stored Cryptography Verification Requirements

To ensure that a verified application satisfies the following high-level requirements:

• All cryptographic modules fail in a secure manner and that errors are handled correctly.

• A suitable random number generator is used.

• Access to keys is securely managed.

6.1 V6.1 Data Classification

Description L1 L2 L3 CWE

6.1.1 Verify that regulated private data is stored

encrypted while at rest, such as personally

identifiable information (PII), sensitive personal

 ✓ ✓ 311

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

34

information, or data assessed likely to be subject

to EU's GDPR.

6.1.2 Verify that regulated health data is stored

encrypted while at rest, such as medical records,

medical device details, or de-anonymized

research records.

 ✓ ✓ 311

6.1.3 Verify that regulated financial data is stored

encrypted while at rest, such as financial

accounts, defaults or credit history, tax records,

pay history, beneficiaries, or de-anonymized

market or research records.

 ✓ ✓ 311

6.2 V6.2 Algorithms

Although this section is not easily penetration tested, developers shall consider this entire

section as mandatory even though L1 is missing from most of the items.

Description L1 L2 L3 CWE

6.2.1 Verify that all cryptographic modules fail

securely, and errors are handled in a way that

does not enable Padding Oracle attacks.

✓ ✓ ✓ 310

6.2.2 Verify that industry proven or government

approved cryptographic algorithms, modes, and

libraries are used, instead of custom coded

cryptography. (C8)

✓ ✓ ✓ 327

6.2.3 Verify that encryption initialization vector, cipher

configuration, and block modes are configured

securely using the latest advice.

✓ ✓ ✓ 326

6.2.4 Verify that random number, encryption or

hashing algorithms, key lengths, rounds, ciphers

or modes, can be reconfigured, upgraded, or

swapped at any time, to protect against

cryptographic breaks. (C8)

✓ ✓ ✓ 326

6.2.5 Verify that known insecure block modes (i.e.

ECB, etc.), padding modes (i.e. PKCS#1 v1.5,

etc.), ciphers with small block sizes (i.e. Triple-

DES, Blowfish, etc.), and weak hashing

algorithms (i.e. MD5, SHA1, etc.) are not used

unless required for backwards compatibility.

✓ ✓ ✓ 326

6.2.6 Verify that nonces, initialization vectors, and

other single use numbers must not be used

 ✓ ✓ 326

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

Description L1 L2 L3 CWE

more than once with a given encryption key. The

method of generation must be appropriate for

the algorithm being used.

6.2.7 Verify that encrypted data is authenticated via

signatures, authenticated cipher modes, or

HMAC to ensure that ciphertext is not altered by

an unauthorized party.

 ✓ 326

6.2.8 Verify that all cryptographic operations are

constant-time, with no 'short-circuit' operations in

comparisons, calculations, or returns, to avoid

leaking information.

 ✓ 385

6.3 V6.3 Random Values

Description L1 L2 L3 CWE

6.3.1 Verify that all random numbers, random file

names, random GUIDs, and random strings are

generated using the cryptographic module's

approved cryptographically secure random

number generator when these random values

are intended to be not guessable by an attacker.

 ✓ ✓ 338

6.3.2 Verify that random GUIDs are created using the

GUID v4 algorithm, and a cryptographically-

secure pseudo-random number generator

(CSPRNG). GUIDs created using other pseudo-

random number generators may be predictable.

 ✓ ✓ 338

6.3.3 Verify that random numbers are created with

proper entropy even when the application is

under heavy load, or that the application

degrades gracefully in such circumstances.

 ✓ 338

6.4 V6.4 Secret Management (password management)

Description L1 L2 L3 CWE

6.4.1 Verify that a secrets management solution such

as a key vault is used to securely create, store,

control access to and destroy secrets. (C8)

✓ ✓ ✓ 798

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

36

6.4.2 Verify that key material is not exposed to the

application but instead uses an isolated security

module like a vault for cryptographic operations.

(C8)

✓ ✓ ✓ 320

7. V7: Error Handling and Logging Verification

Requirements

The primary objective of error handling and logging is to provide useful information for the user,

administrators, and incident response teams.

7.1 V7.1 Log Content Requirements

Logging sensitive information is dangerous they need to be encrypted, become subject to

retention policies, and must be disclosed in security audits. Only necessary information shall be

kept in logs, and certainly no credentials (including session tokens), sensitive or personally

identifiable information.

V7.1 covers OWASP Top 10 2017:A10. As 2017:A10 and this section are not penetration

testable, it's important for:

• Developers to ensure full compliance with this section, as if all items were marked as L1

• Penetration testers to validate full compliance of all items in V7.1 via interview, screenshots,

or assertion

Description L1 L2 L3 CWE

7.1.1 Verify that the application does not log

credentials or payment details. Session tokens

should only be stored in logs in an irreversible,

hashed form. (C9, C10)

✓ ✓ ✓ 532

7.1.2 Verify that the application does not log other

sensitive data as defined under local privacy

laws or relevant security policy. (C9)

✓ ✓ ✓ 532

7.1.3 Verify that the application logs security relevant

events including successful and failed

authentication events, access control failures,

deserialization failures and input validation

failures. (C5, C7)

 ✓ ✓ 778

7.1.4 Verify that each log event includes necessary

information that would allow for a detailed

 ✓ ✓ 778

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

investigation of the timeline when an event

happens. (C9)

7.2 V7.2 Log Processing Requirements

V7.2 covers OWASP Top 10 2017:A10. As 2017:A10 and this section are not penetration

testable, it's important for:

• Developers to ensure full compliance with this section, as if all items were marked as L1

• Penetration testers to validate full compliance of all items in V7.2 via interview, screenshots,

or assertion

Description L1 L2 L3 CWE

7.2.1 Verify that all authentication decisions are

logged, without storing sensitive session

identifiers or passwords. This should include

requests with relevant metadata needed for

security investigations.

 ✓ ✓ 778

7.2.2 Verify that all access control decisions can be

logged and all failed decisions are logged. This

should include requests with relevant metadata

needed for security investigations.

 ✓ ✓ 285

7.3 V7.3 Log Protection Requirements

Logs that can be trivially modified or deleted are useless for investigations and prosecutions.

Disclosure of logs can expose inner details about the application or the data it contains. Care

must be taken when protecting logs from unauthorized disclosure, modification or deletion.

Description L1 L2 L3 CWE

7.3.1 Verify that the application appropriately encodes

user-supplied data to prevent log injection. (C9)

 ✓ ✓ 117

7.3.2 Verify that all events are protected from injection

when viewed in log viewing software. (C9)

 ✓ ✓ 117

7.3.3 Verify that security logs are protected from

unauthorized access and modification. (C9)

 ✓ ✓ 200

7.3.4 Verify that time sources are synchronized to the

correct time and time zone. Strongly consider

logging only in UTC if systems are global to

assist with post-incident forensic analysis. (C9)

 ✓ ✓

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

38

Note: Log encoding (7.3.1) is difficult to test and review using automated dynamic tools and

penetration tests, but architects, developers, and source code reviewers should consider it an

L1 requirement.

7.4 V7.4 Error Handling

The purpose of error handling is to allow the application to provide security relevant events for

monitoring, triage and escalation. The purpose is not to create logs. When logging security

related events, ensure that there is a purpose to the log, and that it can be distinguished by

SIEM or analysis software.

Description L1 L2 L3 CWE

7.4.1 Verify that a generic message is shown when an

unexpected or security sensitive error occurs,

potentially with a unique ID which support

personnel can use to investigate. (C10)

✓ ✓ ✓ 210

7.4.2 Verify that exception handling (or a functional

equivalent) is used across the codebase to

account for expected and unexpected error

conditions. (C10)

 ✓ ✓ 544

7.4.3 Verify that a "last resort" error handler is defined

which will catch all unhandled exceptions. (C10)

 ✓ ✓ 460

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

8. V8: Data Protection Verification Requirements

There are three key elements to sound data protection: Confidentiality, Integrity and Availability

(CIA). This standard assumes that data protection is enforced on a trusted system, such as a

server, which has been hardened and has sufficient protections.

Applications have to assume that all user devices are compromised in some way. Where an

application transmits or stores sensitive information on insecure devices, such as shared

computers, phones and tablets, the application is responsible for ensuring data stored on these

devices is encrypted and cannot be easily illicitly obtained, altered or disclosed.

Ensure that a verified application satisfies the following high level data protection requirements:

• Confidentiality: Data should be protected from unauthorized observation or disclosure both in

transit and when stored.

• Integrity: Data should be protected from being maliciously created, altered or deleted by

unauthorized attackers.

• Availability: Data should be available to authorized users as required.

8.1 V8.1 General Data Protection

Description L1 L2 L3 CWE

8.1.1 Verify the application protects sensitive data

from being cached in server components such

as load balancers and application caches.

 ✓ ✓ 524

8.1.2 Verify that all cached or temporary copies of

sensitive data stored on the server are protected

from unauthorized access or purged/invalidated

after the authorized user accesses the sensitive

data.

 ✓ ✓ 524

8.1.3 Verify the application minimizes the number of

parameters in a request, such as hidden fields,

Ajax variables, cookies and header values.

 ✓ ✓ 233

8.1.4 Verify the application can detect and alert on

abnormal numbers of requests, such as by IP,

user, total per hour or day, or whatever makes

sense for the application.

 ✓ ✓ 770

8.1.5 Verify that regular backups of important data are

performed and that test restoration of data is

performed.

 ✓ 19

8.1.6 Verify that backups are stored securely to

prevent data from being stolen or corrupted.

 ✓ 19

40

8.2 V8.2 Client-side Data Protection

Description L1 L2 L3 CWE

8.2.1 Verify the application sets sufficient anti-caching

headers so that sensitive data is not cached in

modern browsers.

✓ ✓ ✓ 525

8.2.2 Verify that data stored in client side storage

(such as HTML5 local storage, session storage,

IndexedDB, regular cookies or Flash cookies)

does not contain sensitive data or PII.

✓ ✓ ✓ 922

8.2.3 Verify that authenticated data is cleared from

client storage, such as the browser DOM, after

the client or session is terminated.

✓ ✓ ✓ 922

8.3 V8.3 Sensitive Private Data

This section helps protect sensitive data from being created, read, updated, or deleted without

authorization, particularly in bulk quantities.

Compliance with this section implies compliance with V4 Access Control, and in particular V4.2.

For example, to protect against unauthorized updates or disclosure of sensitive personal

information requires adherence to V4.2.1. Please comply with this section and V4 for full

coverage.

Note: Privacy regulations and laws, such as the Australian Privacy Principles APP-11 or GDPR,

directly affect how applications must approach the implementation of storage, use, and

transmission of sensitive personal information. This ranges from severe penalties to simple

advice. Please consult your local laws and regulations, and consult a qualified privacy specialist

or lawyer as required.

Description L1 L2 L3 CWE

8.3.1 Verify that sensitive data is sent to the server in

the HTTP message body or headers, and that

query string parameters from any HTTP verb do

not contain sensitive data.

✓ ✓ ✓ 319

8.3.2 Verify that users have a method to remove or

export their data on demand.
✓ ✓ ✓ 212

8.3.3 Verify that users are provided clear language

regarding collection and use of supplied

personal information and that users have

provided opt-in consent for the use of that data

before it is used in any way.

✓ ✓ ✓ 285

8.3.4 Verify that all sensitive data created and

processed by the application has been identified,
✓ ✓ ✓ 200

and ensure that a policy is in place on how to

deal with sensitive data. (C8)

8.3.5 Verify accessing sensitive data is audited

(without logging the sensitive data itself), if the

data is collected under relevant data protection

directives or where logging of access is required.

 ✓ ✓ 532

8.3.6 Verify that sensitive information contained in

memory is overwritten as soon as it is no longer

required to mitigate memory dumping attacks,

using zeroes or random data.

 ✓ ✓ 226

8.3.7 Verify that sensitive or private information that is

required to be encrypted, is encrypted using

approved algorithms that provide both

confidentiality and integrity. (C8)

 ✓ ✓ 327

8.3.8 Verify that sensitive personal information is

subject to data retention classification, such that

old or out of date data is deleted automatically,

on a schedule, or as the situation requires.

 ✓ ✓ 285

When considering data protection, a primary consideration should be around bulk extraction or

modification or excessive usage. For example, many social media systems only allow users to

add 100 new friends per day, but which system these requests came from is not important. A

banking platform might wish to block more than 5 transactions per hour transferring more than

1000 euro of funds to external institutions. Each system's requirements are likely to be very

different, so deciding on "abnormal" must consider the threat model and business risk.

Important criteria are the ability to detect, deter, or preferably block such abnormal bulk actions.

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

42

9. V9: Communications Verification Requirements

Ensure that a verified application satisfies the following high level requirements:

• TLS or strong encryption is always used, regardless of the sensitivity of the data being

transmitted

• The most recent, leading configuration advice is used to enable and order preferred

algorithms and ciphers

• Weak or soon to be deprecated algorithms and ciphers are ordered as a last resort

• Deprecated or known insecure algorithms and ciphers are disabled.

Leading industry advice on secure TLS configuration changes frequently, often due to

catastrophic breaks in existing algorithms and ciphers. Always use the most recent versions of

TLS configuration review tools (such as SSLyze or other TLS scanners) to configure the

preferred order and algorithm selection. Configuration should be periodically checked to ensure

that secure communications configuration is always present and effective.

9.1 V9.1 Communications Security Requirements

All client communications should only take place over encrypted communication paths. In

particular, the use of TLS 1.2 or later is essentially all but required by modern browsers and

search engines. Configuration should be regularly reviewed using online tools to ensure that the

latest leading practices are in place.

Description L1 L2 L3 CWE

9.1.1 Verify that secured TLS is used for all client

connectivity, and does not fall back to insecure

or unencrypted protocols. (C8)

✓ ✓ ✓ 319

9.1.2 Verify using online or up to date TLS testing

tools that only strong algorithms, ciphers, and

protocols are enabled, with the strongest

algorithms and ciphers set as preferred.

✓ ✓ ✓ 326

9.1.3 Verify that old versions of SSL and TLS

protocols, algorithms, ciphers, and configuration

are disabled, such as SSLv2, SSLv3, or TLS 1.0

and TLS 1.1. The latest version of TLS should

be the preferred cipher suite.

✓ ✓ ✓ 326

9.2 V9.2 Server Communications Security Requirements

Server communications are more than just HTTP. Secure connections to and from other

systems, such as monitoring systems, management tools, remote access and ssh, middleware,

database, mainframes, partner or external source systems — must be in place. All of these

must be encrypted to prevent "hard on the outside, trivially easy to intercept on the inside".

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

Description L1 L2 L3 CWE

9.2.1 Verify that connections to and from the server

use trusted TLS certificates. Where internally

generated or self-signed certificates are used,

the server must be configured to only trust

specific internal CAs and specific self-signed

certificates. All others should be rejected.

 ✓ ✓ 295

9.2.2 Verify that encrypted communications such as

TLS is used for all inbound and outbound

connections, including for management ports,

monitoring, authentication, API, or web service

calls, database, cloud, serverless, mainframe,

external, and partner connections. The server

must not fall back to insecure or unencrypted

protocols.

 ✓ ✓ 319

9.2.3 Verify that all encrypted connections to external

systems that involve sensitive information or

functions are authenticated.

 ✓ ✓ 287

9.2.4 Verify that proper certification revocation, such

as Online Certificate Status Protocol (OCSP)

Stapling, is enabled and configured.

 ✓ ✓ 299

9.2.5 Verify that backend TLS connection failures are

logged.

 ✓ 544

10. V10: Malicious Code Verification Requirements

Ensure that code satisfies the following high level requirements:

• Malicious activity is handled securely and properly to not affect the rest of the application.

• Does not have time bombs or other time-based attacks.

• Does not "phone home" to malicious or unauthorized destinations.

• Does not have back doors, Easter eggs, salami attacks, rootkits, or unauthorized code that

can be controlled by an attacker.

Finding malicious code is proof of the negative, which is impossible to completely validate. Best

efforts should be undertaken to ensure that the code has no inherent malicious code or unwanted

functionality.

10.1 V10.1 Code Integrity Controls

The best defense against malicious code is "trust, but verify". Introducing unauthorized or

malicious code into code is often a criminal offence in many jurisdictions. Policies and

procedures should make sanctions regarding malicious code clear.

Lead developers should regularly review code check-ins, particularly those that might access

time, I/O, or network functions.

44

Description L1 L2 L3 CWE

10.1.1 Verify that a code analysis tool is in use that

can detect potentially malicious code, such as

time functions, unsafe file operations and

network connections.

 ✓ 749

10.2 V10.2 Malicious Code Search

Malicious code is extremely rare and is difficult to detect. Manual line by line code review can

assist looking for logic bombs, but even the most experienced code reviewer will struggle to find

malicious code even if they know it exists.

Complying with this section is not possible without complete access to source code, including

third-party libraries.

Description L1 L2 L3 CWE

10.2.1 Verify that the application source code and third

party libraries do not contain unauthorized

phone home or data collection capabilities.

Where such functionality exists, obtain the

user's permission for it to operate before

collecting any data.

 ✓ ✓ 359

10.2.2 Verify that the application does not ask for

unnecessary or excessive permissions to

privacy related features or sensors, such as

contacts, cameras, microphones, or location.

 ✓ ✓ 272

10.2.3 Verify that the application source code and third

party libraries do not contain back doors, such

as hard-coded or additional undocumented

accounts or keys, code obfuscation,

undocumented binary blobs, rootkits, or anti-

debugging, insecure debugging features, or

otherwise out of date, insecure, or hidden

functionality that could be used maliciously if

discovered.

 ✓ 507

10.2.4 Verify that the application source code and third

party libraries does not contain time bombs by

searching for date and time related functions.

 ✓ 511

10.2.5 Verify that the application source code and third

party libraries does not contain malicious code,

such as salami attacks, logic bypasses, or logic

bombs.

 ✓ 511

10.2.6 Verify that the application source code and third

party libraries do not contain Easter eggs or

any other potentially unwanted functionality.

 ✓ 507

10.3 V10.3 Deployed Application Integrity Controls

Once an application is deployed, malicious code can still be inserted. Applications need to protect

themselves against common attacks, such as executing unsigned code from untrusted sources and

sub-domain takeovers.

Complying with this section is likely to be operational and continuous.

Description L1 L2 L3 CWE

10.3.1 Verify that if the application has a client or

server auto-update feature, updates should be

obtained over secure channels and digitally

signed. The update code must validate the

digital signature of the update before installing

or executing the update.

✓ ✓ ✓ 16

10.3.2 Verify that the application employs integrity

protections, such as code signing or sub-

resource integrity. The application must not

load or execute code from untrusted sources,

such as loading includes, modules, plugins,

code, or libraries from untrusted sources or the

Internet.

✓ ✓ ✓ 353

10.3.3 Verify that the application has protection from

sub-domain takeovers if the application relies

upon DNS entries or DNS sub-domains, such

as expired domain names, out of date DNS

pointers or CNAMEs, expired projects at public

source code repos, or transient cloud APIs,

serverless functions, or storage buckets

(autogen-bucket-id.cloud.example.com) or

similar. Protections can include ensuring that

DNS names used by applications are regularly

checked for expiry or change.

✓ ✓ ✓ 350

46

11. V11: Business Logic Verification Requirements

Ensure that a verified application satisfies the following high-level requirements:

• The business logic flow is sequential, processed in order, and cannot be bypassed.

• Business logic includes limits to detect and prevent automated attacks, such as continuous

small funds transfers, or adding a million friends one at a time, and so on.

• High value business logic flows have considered abuse cases and malicious actors, and have

protections against spoofing, tampering, repudiation, information disclosure, and elevation of

privilege attacks.

11.1 V11.1 Business Logic Security Requirements

Business logic security is individual to every application. Business logic security must be

designed in to protect against likely external threats - it cannot be added using web application

firewalls or secure communications. The use of threat modelling during design is requested, for

example using the OWASP Cornucopia or similar tools.

Description L1 L2 L3 CWE

11.1.1 Verify the application will only process business

logic flows for the same user in sequential step

order and without skipping steps.

✓ ✓ ✓ 841

11.1.2 Verify the application will only process business

logic flows with all steps being processed in

realistic human time, i.e. transactions are not

submitted too quickly.

✓ ✓ ✓ 779

11.1.3 Verify the application has appropriate limits for

specific business actions or transactions which

are correctly enforced on a per user basis.

✓ ✓ ✓ 770

11.1.4 Verify the application has sufficient anti-

automation controls to detect and protect

against data exfiltration, excessive business

logic requests, excessive file uploads or denial

of service attacks.

✓ ✓ ✓ 770

11.1.5 Verify the application has business logic limits

or validation to protect against likely business

risks or threats, identified using threat

modelling or similar methodologies.

✓ ✓ ✓ 841

11.1.6 Verify the application does not suffer from "time

of check to time of use" (TOCTOU) issues or

other race conditions for sensitive operations.

 ✓ ✓ 367

11.1.7 Verify the application monitors for unusual

events or activity from a business logic

perspective. For example, attempts to perform

actions out of order or actions which a normal

user would never attempt. (C9)

 ✓ ✓ 754

11.1.8 Verify the application has configurable alerting

when automated attacks or unusual activity is

detected.

 ✓ ✓ 390

12. V12: File and Resources Verification

Requirements

To Ensure that a verified application satisfies the following high-level requirements:

• Untrusted file data should be handled accordingly and in a secure manner.

• Untrusted file data obtained from untrusted sources are stored outside the web root and

with limited permissions.

12.1 V12.1 File Upload Requirements

Although zip bombs are eminently testable using penetration testing techniques, they are

considered L2 and above to encourage design and development consideration with careful

manual testing, and to avoid automated or unskilled manual penetration testing of a denial of

service condition.

Description L1 L2 L3 CWE

12.1.1 Verify that the application will not accept large

files that could fill up storage or cause a denial

of service attack.

✓ ✓ ✓ 400

12.1.2 Verify that compressed files are checked for

"zip bombs" - small input files that will

decompress into huge files thus exhausting file

storage limits.

 ✓ ✓ 409

12.1.3 Verify that a file size quota and maximum

number of files per user is enforced to ensure

that a single user cannot fill up the storage with

too many files, or excessively large files.

 ✓ ✓ 770

12.2 V12.2 File Integrity Requirements

Description L1 L2 L3 CWE

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

48

12.2.1 Verify that files obtained from untrusted

sources are validated to be of expected type

based on the file's content.

 ✓ ✓ 434

12.3 V12.3 File execution Requirements

Description L1 L2 L3 CWE

12.3.1 Verify that user-submitted filename metadata is

not used directly with system or framework file

and URL API to protect against path traversal.

✓ ✓ ✓ 22

12.3.2 Verify that user-submitted filename metadata is

validated or ignored to prevent the disclosure,

creation, updating or removal of local files (LFI).

✓ ✓ ✓ 73

12.3.3 Verify that user-submitted filename metadata is

validated or ignored to prevent the disclosure or

execution of remote files (RFI), which may also

lead to SSRF.

✓ ✓ ✓ 98

12.3.4 Verify that the application protects against

reflective file download (RFD) by validating or

ignoring user-submitted filenames in a JSON,

JSONP, or URL parameter, the response

Content-Type header should be set to

text/plain, and the Content-Disposition header

should have a fixed filename.

✓ ✓ ✓ 641

12.3.5 Verify that untrusted file metadata is not used

directly with system API or libraries, to protect

against OS command injection.

✓ ✓ ✓ 78

12.3.6 Verify that the application does not include and

execute functionality from untrusted sources,

such as unverified content distribution

networks, JavaScript libraries, node npm

libraries, or server-side DLLs.

 ✓ ✓ 829

12.4 V12.4 File Storage Requirements

Description L1 L2 L3 CWE

12.4.1 Verify that files obtained from untrusted

sources are stored outside the web root, with

limited permissions, preferably with strong

validation.

✓ ✓ ✓ 922

12.4.2 Verify that files obtained from untrusted

sources are scanned by antivirus scanners to

prevent upload of known malicious content.

✓ ✓ ✓ 509

12.5 V12.5 File Download Requirements

Description L1 L2 L3 CWE

12.5.1 Verify that the web tier is configured to serve

only files with specific file extensions to prevent

unintentional information and source code

leakage. For example, backup files (e.g. .bak),

temporary working files (e.g. .swp),

compressed files (.zip, .tar.gz, etc) and other

extensions commonly used by editors should

be blocked unless required.

✓ ✓ ✓ 552

12.5.2 Verify that direct requests to uploaded files will

never be executed as HTML/JavaScript

content.

✓ ✓ ✓ 434

12.6 V12.6 SSRF Protection Requirements

Description L1 L2 L3 CWE

12.6.1 Verify that the web or application server is

configured with a whitelist of resources or

systems to which the server can send requests

or load data/files from.

✓ ✓ ✓ 918

50

13. V13: API and Web Service Verification

Requirements

To ensure that a verified application that uses trusted service layer APIs (commonly using JSON or

XML or GraphQL) has:

• Adequate authentication, session management and authorization of all web services.

• Input validation of all parameters that transit from a lower to higher trust level.

• Effective security controls for all API types, including cloud and Serverless API

This chapter should be read in combination with all other chapters at this same level; authentication

or API session management controls are not duplicated.

13.1 V13.1 Generic Web Service Security Verification Requirements

Description L1 L2 L3 CWE

13.1.1 Verify that all application components use the

same encodings and parsers to avoid parsing

attacks that exploit different URI or file parsing

behavior that could be used in SSRF and RFI

attacks.

✓ ✓ ✓ 116

13.1.2 Verify that access to administration and

management functions is limited to authorized

administrators.

✓ ✓ ✓ 419

13.1.3 Verify API URLs do not expose sensitive

information, such as the API key, session

tokens etc.

✓ ✓ ✓ 598

13.1.4 Verify that authorization decisions are made at

both the URI, enforced by programmatic or

declarative security at the controller or router,

and at the resource level, enforced by model-

based permissions.

 ✓ ✓ 285

13.1.5 Verify that requests containing unexpected or

missing content types are rejected with

appropriate headers (HTTP response status

406 Unacceptable or 415 Unsupported Media

Type).

 ✓ ✓ 434

13.2 V13.2 RESTful Web Service Verification Requirements

Description L1 L2 L3 CWE

13.2.1 Verify that enabled RESTful HTTP methods are

a valid choice for the user or action, such as

preventing normal users using DELETE or PUT

on protected API or resources.

✓ ✓ ✓ 650

13.2.2 Verify that JSON schema validation is in place

and verified before accepting input.
✓ ✓ ✓ 20

13.2.3 Verify that RESTful web services that utilize

cookies are protected from Cross-Site Request

Forgery via the use of at least one or more of

the following: triple or double submit cookie

pattern (see references), CSRF nonces, or

ORIGIN request header checks.

✓ ✓ ✓ 352

13.2.4 Verify that REST services have anti-automation

controls to protect against excessive calls,

especially if the API is unauthenticated.

 ✓ ✓ 779

13.2.5 Verify that REST services explicitly check the

incoming Content-Type to be the expected one,

such as application/xml or application/JSON.

 ✓ ✓ 436

13.2.6 Verify that the message headers and payload

are trustworthy and not modified in transit.

Requiring strong encryption for transport (TLS

only) may be sufficient in many cases as it

provides both confidentiality and integrity

protection. Per-message digital signatures can

provide additional assurance on top of the

transport protections for high-security

applications but bring with them additional

complexity and risks to weigh against the

benefits.

 ✓ ✓ 345

13.3 V13.3 SOAP Web Service Verification Requirements

Description L1 L2 L3 CWE

13.3.1 Verify that XSD schema validation takes place

to ensure a properly formed XML document,

followed by validation of each input field before

any processing of that data takes place.

✓ ✓ ✓ 20

13.3.2 Verify that the message payload is signed

using WS-Security to ensure reliable transport

between client and service.

 ✓ ✓ 345

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

52

Note: Due to issues with XXE attacks against DTDs, DTD validation should not be used, and

framework DTD evaluation disabled as per the requirements set out in V14 Configuration.

13.4 V13.4 GraphQL and other Web Service Data Layer Security Requirements

Description L1 L2 L3 CWE

13.4.1 Verify that query whitelisting or a combination

of depth limiting and amount limiting should be

used to prevent GraphQL or data layer

expression denial of service (DoS) as a result

of expensive, nested queries. For more

advanced scenarios, query cost analysis

should be used.

 ✓ ✓ 770

13.4.2 Verify that GraphQL or other data layer

authorization logic should be implemented at

the business logic layer instead of the GraphQL

layer.

 ✓ ✓ 285

14. V14: Configuration Verification Requirements

14.1 V14.1 Build

Description L1 L2 L3 CWE

14.1.1 Verify that the application build and deployment

processes are performed in a secure and

repeatable way, such as CI / CD automation,

automated configuration management, and

automated deployment scripts.

 ✓ ✓

14.1.2 Verify that compiler flags are configured to

enable all available buffer overflow protections

and warnings, including stack randomization,

data execution prevention, and to break the

build if an unsafe pointer, memory, format

string, integer, or string operations are found.

 ✓ ✓ 120

14.1.3 Verify that server configuration is hardened as

per the recommendations of the application

server and frameworks in use.

 ✓ ✓ 16

14.1.4 Verify that the application, configuration, and all

dependencies can be re-deployed using

automated deployment scripts, built from a

documented and tested runbook in a

reasonable time, or restored from backups in a

timely fashion.

 ✓ ✓

14.1.5 Verify that authorized administrators can verify

the integrity of all security-relevant

configurations to detect tampering.

 ✓

14.2 V14.2 Dependency

Note: At Level 1, 14.2.1 compliance relates to observations or detections of client-side and

other libraries and components, rather than the more accurate build-time static code analysis or

dependency analysis. These more accurate techniques could be discoverable by interview as

required.

Description L1 L2 L3 CWE

14.2.1 Verify that all components are up to date,

preferably using a dependency checker during

build or compile time. (C2)

✓ ✓ ✓ 1026

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

54

14.2.2 Verify that all unneeded features,

documentation, samples, configurations are

removed, such as sample applications, platform

documentation, and default or example users.

✓ ✓ ✓ 1002

14.2.3 Verify that if application assets, such as

JavaScript libraries, CSS stylesheets or web

fonts, are hosted externally on a content

delivery network (CDN) or external provider,

Sub resource Integrity (SRI) is used to validate

the integrity of the asset.

✓ ✓ ✓ 714

14.2.4 Verify that third party components come from

pre-defined, trusted and continually maintained

repositories. (C2)

 ✓ ✓ 829

14.2.5 Verify that an inventory catalog is maintained of

all third party libraries in use. (C2)

 ✓ ✓

14.2.6 Verify that the attack surface is reduced by

sandboxing or encapsulating third party

libraries to expose only the required behaviour

into the application. (C2)

 ✓ ✓ 265

14.3 V14.3 Unintended Security Disclosure Requirements

Configurations for production should be hardened to protect against common attacks, such as

debug consoles, raise the bar for cross-site scripting (XSS) and remote file inclusion (RFI)

attacks, and to eliminate trivial information discovery "vulnerabilities”. Many of these issues are

rarely rated as a significant risk, but they are chained together with other vulnerabilities. If these

issues are not present by default, it raises the bar before most attacks can succeed.

Description L1 L2 L3 CWE

14.3.1 Verify that web or application server and

framework error messages are configured to

deliver user actionable, customized responses

to eliminate any unintended security

disclosures.

✓ ✓ ✓ 209

14.3.2 Verify that web or application server and

application framework debug modes are

disabled in production to eliminate debug

features, developer consoles, and unintended

security disclosures.

✓ ✓ ✓ 497

14.3.3 Verify that the HTTP headers or any part of the

HTTP response do not expose detailed version

information of system components.

✓ ✓ ✓ 200

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=Formal_Numbering

14.4 V14.4 HTTP Security Headers Requirements

Description L1 L2 L3 CWE

14.4.1 Verify that every HTTP response contains a

content type header specifying a safe character

set (e.g., UTF-8, ISO 8859-1).

✓ ✓ ✓ 173

14.4.2 Verify that all API responses contain Content-

Disposition: attachment; filename="api.json" (or

other appropriate filename for the content type).

✓ ✓ ✓ 116

14.4.3 Verify that a content security policy (CSPv2) is

in place that helps mitigate impact for XSS

attacks like HTML, DOM, JSON, and

JavaScript injection vulnerabilities.

✓ ✓ ✓ 1021

14.4.4 Verify that all responses contain X-Content-

Type-Options: nosniff.
✓ ✓ ✓ 116

14.4.5 Verify that HTTP Strict Transport Security

headers are included on all responses and for

all subdomains, such as Strict-Transport-

Security: max-age=15724800;

includeSubdomains.

✓ ✓ ✓ 523

14.4.6 Verify that a suitable "Referrer-Policy" header is

included, such as "no-referrer" or "same-origin".
✓ ✓ ✓ 116

14.4.7 Verify that a suitable X-Frame-Options or

Content-Security-Policy: frame-ancestors

header is in use for sites where content should

not be embedded in a third-party site.

✓ ✓ ✓ 346

14.5 V14.5 Validate HTTP Request Header Requirements

Description L1 L2 L3 CWE

14.5.1 Verify that the application server only accepts

the HTTP methods in use by the application or

API, including pre-flight OPTIONS.

✓ ✓ ✓ 749

14.5.2 Verify that the supplied Origin header is not

used for authentication or access control

decisions, as the Origin header can easily be

changed by an attacker.

✓ ✓ ✓ 346

56

14.5.3 Verify that the cross-domain resource sharing

(CORS) Access-Control-Allow-Origin header

uses a strict white-list of trusted domains to

match against and does not support the "null"

origin.

✓ ✓ ✓ 346

14.5.4 Verify that HTTP headers added by a trusted

proxy or SSO devices, such as a bearer token,

are authenticated by the application.

 ✓ ✓ 306

 EMSA security development recommendation table

Version 1.0

Date: 17/09/19

Document History

Version
Date Changes Prepared

Approved

1.0 17/09/2019 Publish EMSA

Table of Contents

1. Secure development verification ... 4
1.1 V1: Architecture, design and Threat Modeling ... 4
1.2 V2: Authentication Verification Requirements .. 8
1.3 V3: Session Management Verification Requirements .. 10
1.4 V4: Access Control Verification Requirements ... 11
1.5 V5: Validation, Sanitization and Encoding Verification Requirements ... 12
1.6 V6: Stored Cryptography Verification Requirements .. 16
1.7 V7: Error Handling and Logging Verification Requirements ... 17
1.8 V8: Data Protection Verification Requirements .. 18
1.9 V9: Communications Verification Requirements .. 18
1.10 V10: Malicious Code Verification Requirements .. 18
1.11 V11: Business Logic Verification Requirements ... 19
1.12 V12: File and Resources Verification Requirements .. 19
1.13 V13: API and Web Service Verification Requirements ... 20
1.14 V14: Configuration Verification Requirements ... 21

Acronyms

ASVS OWASP Application Security Verification Standard

1. Secure development verification

Secure development is a requirement for any application or component that is integrated into EMSA ICT Landscape. OWASP Application Security Verification Standard

is an industry standard that complies with EMSA requirements to verify that specific security measures are in place in the application or code. The aim of the following

implementation table is to help with the compliance of ASVS requirements into EMSA applications by providing recommended cheat-sheets for almost every item.

1.1 V1: Architecture, design and Threat Modeling

Requirements family Requirement Recommended cheat sheet

V1.1 Secure Software Development

Lifecycle Requirements

Threat modelling https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Threat_Modeling_Cheat_Sheet.md

 Attack surface Analysis https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Attack_Surface_Analysis_Cheat_Sheet.md

 Abuse Case https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Abuse_Case_Cheat_Sheet.md

V1.2 Authentication Architectural

Requirements

Requirements come through:

• OAM

• OAuth2

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Threat_Modeling_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Threat_Modeling_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md

• OpenID

• Other such as SAML, FIDO…

V1.3 Session Management Architectural

Requirements

• Session ID properties

• Session management implementation

• Cookies

• HTML5 web storage API (if applicable)

• Session ID Life Cycle

• Session Expiration (check EMSA Policy)

• Additional Client-Side Defences for

Session Management (if applicable)

• Session Attacks Detection:

o Session ID guessing and brute force

o Session ID Anomalies

o Logging sessions life cycle

o Binding session ID to Other user

properties

o Simultaneous session logons (if

applicable)

• Session Management WAF protections

https://cheatsheetseries.owasp.org/cheatsheets/Session_Man

agement_Cheat_Sheet.html

V1.4 Access Control Architectural

Requirements

Docker Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Docker_Security_Cheat_Sheet.md

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md

6

V1.5 Input and Output Architectural

Requirements

Deserialization https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Deserialization_Cheat_Sheet.md

 Abuse Case https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Abuse_Case_Cheat_Sheet.md

V1.6 Cryptographic Architectural

Requirements

Cryptographic storage https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cryptographic_Storage_Cheat_Sheet.md

 Key management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Key_Management_Cheat_Sheet.md

V1.7 Errors, Logging and Auditing

Architectural Requirements

Logging https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Logging_Cheat_Sheet.md

V1.8 Data Protection and Privacy

Architectural Requirements

Data protection: cryptography, support for

HSTS, digital certificate pinning, etc.

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/User_Privacy_Protection_Cheat_Sheet.md

 Abuse Case https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Abuse_Case_Cheat_Sheet.md

V1.9 Communications Architectural

Requirements

Transport layer protection https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Transport_Layer_Protection_Cheat_Sheet.md

 TLS cypher string https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/TLS_Cipher_String_Cheat_Sheet.md

V1.10 Malicious Software Architectural

Requirements

N/A

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Deserialization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Deserialization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cryptographic_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cryptographic_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/User_Privacy_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/User_Privacy_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_Cipher_String_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_Cipher_String_Cheat_Sheet.md

V1.11 Business Logic Architectural

Requirements

Abuse case https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Abuse_Case_Cheat_Sheet.md

V1.12 Secure File Upload Architectural

Requirements

Transport layer protection https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Transport_Layer_Protection_Cheat_Sheet.md

V1.13 API Architectural Requirements • HTTPS

• Access control

• JWT

• Restrict HTTP methods (check for Java

EE)

• Input validation

• Validation of content types (includes XXE)

• CORS

• Security headers

• Error handling

• Audit logs

• Sensitive information in HTTP requests

• HTTP return code

• Management endpoints

General:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/REST_Security_Cheat_Sheet.md

HTTPS:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Transport_Layer_Protection_Cheat_Sheet.md

JWT for Java:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md#toke

n-explicit-revocation-by-the-user

Validation of content types: XXE attack:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/XML_External_Entity_Prevention_Cheat_Sheet.md

Security headers:

https://www.owasp.org/index.php/OWASP_Secure_Headers_P

roject#tab=Headers

Restrict HTTP methods in Java EE needs to check bypassing

web authentication and authorization with HTTP verb

tampering common misconfiguration:

https://github.com/OWASP/CheatSheetSeries/blob/master/ass

ets/REST_Security_Cheat_Sheet_Bypassing_VBAAC_with_H

TTP_Verb_Tampering.pdf

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md#token-explicit-revocation-by-the-user
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md#token-explicit-revocation-by-the-user
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md#token-explicit-revocation-by-the-user
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers
https://github.com/OWASP/CheatSheetSeries/blob/master/assets/REST_Security_Cheat_Sheet_Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf
https://github.com/OWASP/CheatSheetSeries/blob/master/assets/REST_Security_Cheat_Sheet_Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf
https://github.com/OWASP/CheatSheetSeries/blob/master/assets/REST_Security_Cheat_Sheet_Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf

8

V1.14 Configuration Architectural

Requirements

N/A

1.2 V2: Authentication Verification Requirements

Requirements family Requirement Recommended cheat sheet

V2.1 Password Security Requirement N/A

V2.2 General Authenticator

Requirements

Authentication general approach https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Authentication_Cheat_Sheet.md

 Transport Layer Protection https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Transport_Layer_Protection_Cheat_Sheet.md

 TLS Cipher string https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/TLS_Cipher_String_Cheat_Sheet.md

V2.3 Authenticator Lifecycle

Requirements

N/A

V2.4 Credential Storage Requirements Password storage Password storage including implementation proposal in Java

(using Argon2 library):

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Password_Storage_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_Cipher_String_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_Cipher_String_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md

V2.5 Credential Recovery Requirements Choosing and using security questions https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Choosing_and_Using_Security_Questions_Cheat_Sh

eet.md

 Forgot password https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Forgot_Password_Cheat_Sheet.md

V2.6 Look-up Secret Verifier

Requirements

N/A

V2.7 Out of Band Verifier Requirements Forgot password https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Forgot_Password_Cheat_Sheet.md

V2.8 Single or Multi Factor One Time

Verifier Requirements

N/A

V2.9 Cryptographic Software and

Devices Verifier Requirements

Cryptographic storage https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cryptographic_Storage_Cheat_Sheet.md

 Key management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Key_Management_Cheat_Sheet.md

V2.10 Service Authentication

Requirements

N/A

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cryptographic_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cryptographic_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md

10

1.3 V3: Session Management Verification Requirements

Requirements family Requirement Recommended cheat sheet

V3.1 Fundamental Session

Management Requirements

N/A

V3.2 Session Binding Requirements Session binding https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Session_Management_Cheat_Sheet.md

V3.3 Session Logout and Timeout

Requirements

Session logout and timeout (check EMSA

Policy for cut off sessions: 90min non-active

session, 24h active sessions)

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Session_Management_Cheat_Sheet.md

V3.4 Cookie-based Session

Management

Cookies Cookies section:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Session_Management_Cheat_Sheet.md

 Cross-Site Request Forgery Attack (CSRF

attack)

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.md

V3.5 Token-based Session

Management

JWT for Java https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md

 REST Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/REST_Security_Cheat_Sheet.md

V3.6 Re-authentication from a

Federation or Assertion

N/A

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md

V3.7 Defences Against Session

Management Exploit

General defences https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Session_Management_Cheat_Sheet.md

 Transaction Authorization (N/A) https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Transaction_Authorization_Cheat_Sheet.md

1.4 V4: Access Control Verification Requirements

Requirements family Requirement Recommended cheat sheet

V4.1 General Access Control Design Authorization testing automation Authorization testing automation:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Authorization_Testing_Automation.md

Access Control:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Access_Control_Cheat_Sheet.md

V4.2 Operation Level Access Control Insecure Direct Object Reference attack

(IDOR attack) prevention

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Insecure_Direct_Object_Reference_Prevention_Chea

t_Sheet.md

 Cross-Site Request Forgery Attack (CSRF

attack)

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transaction_Authorization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transaction_Authorization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authorization_Testing_Automation.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authorization_Testing_Automation.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Access_Control_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Access_Control_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md

12

 Authorization testing automation https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Authorization_Testing_Automation.md

V4.3 Other Access Control

Considerations

Fuzzing attacks https://www.owasp.org/index.php/OWASP_Testing_Guide_Ap

pendix_C:_Fuzz_Vectors

1.5 V5: Validation, Sanitization and Encoding Verification Requirements

Requirements family Requirement Recommended cheat sheet

V5.1 Input Validation Requirements Mass Assignment vulnerability (Improperly

Controlled Modification of Dynamically-

Determined Object Attributes)

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Mass_Assignment_Cheat_Sheet.md

 Input validation https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Input_Validation_Cheat_Sheet.md

 XSS attack prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md

 File upload validation https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Protect_FileUpload_Against_Malicious_File.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authorization_Testing_Automation.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authorization_Testing_Automation.md
https://www.owasp.org/index.php/OWASP_Testing_Guide_Appendix_C:_Fuzz_Vectors
https://www.owasp.org/index.php/OWASP_Testing_Guide_Appendix_C:_Fuzz_Vectors
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Mass_Assignment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Mass_Assignment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md

V5.2 Sanitization and Sandboxing

Requirements

Server Side Request Forgery attack

prevention (SSRF)

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Server_Side_Request_Forgery_Prevention_Cheat_S

heet.md

 XSS attack prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md

 DOM based XSS attack prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md

 Unvalidated Redirects and Forwards https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.

md

V5.3 Output encoding and Injection

Prevention Requirements

XSS attack prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md

 DOM based XSS attack prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md

 HTML5 Security:

• Communication APIS

o Web messaging

o Cross Origin Resource Sharing

(CORS)

o Websockets implementation

o Server-sent events

• Sotrage APIS

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/HTML5_Security_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTML5_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTML5_Security_Cheat_Sheet.md

14

o Local storage

o Client-side databases

• Geolocation

• Web workers

• Tabnabbing

• Sandboxed frames

• Credential and Personally Identifiable

Information (PII) Input

• Offline applications

• Progressive Enhancements and Graceful

Degradation Risks

• HTTP headers

 Injection prevention General:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Injection_Prevention_Cheat_Sheet.md

Injection prevention in Java:

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Injection_Prevention_Cheat_Sheet_in_Java.md

 Input Validation https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Input_Validation_Cheat_Sheet.md

 LDAP Injection Prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/LDAP_Injection_Prevention_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Injection_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Injection_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Injection_Prevention_Cheat_Sheet_in_Java.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Injection_Prevention_Cheat_Sheet_in_Java.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/LDAP_Injection_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/LDAP_Injection_Prevention_Cheat_Sheet.md

 OS Command Injection Defense https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/OS_Command_Injection_Defense_Cheat_Sheet.md

 Protect File Upload Against Malicious File https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Protect_FileUpload_Against_Malicious_File.md

 Query Parameterization https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Query_Parameterization_Cheat_Sheet.md

 SQL Injection Prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/SQL_Injection_Prevention_Cheat_Sheet.md

 Unvalidated Redirects and Forwards https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.

md

 Bean Validation https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Bean_Validation_Cheat_Sheet.md

 XXE Prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/XML_External_Entity_Prevention_Cheat_Sheet.md

 XML Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/XML_Security_Cheat_Sheet.md

V5.4 Memory, String, and Unmanaged

Code Requirements

N/A

V5.5 Deserialization Prevention

Requirements

Deserialization https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Deserialization_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Query_Parameterization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Query_Parameterization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Bean_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Bean_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Deserialization_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Deserialization_Cheat_Sheet.md

16

 XXE Prevention https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/XML_External_Entity_Prevention_Cheat_Sheet.md

 XML Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/XML_Security_Cheat_Sheet.md

1.6 V6: Stored Cryptography Verification Requirements

Requirements family Requirement Recommended cheat sheet

V6.1 Data Classification Abuse Case https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Abuse_Case_Cheat_Sheet.md

 User Privacy Protection https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/User_Privacy_Protection_Cheat_Sheet.md

V6.2 Algorithms Cryptographic Storage https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cryptographic_Storage_Cheat_Sheet.md

 Key Management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Key_Management_Cheat_Sheet.md

V6.3 Random Values N/A

V6.4 Secret Management Key Management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Key_Management_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/User_Privacy_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/User_Privacy_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cryptographic_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cryptographic_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Key_Management_Cheat_Sheet.md

1.7 V7: Error Handling and Logging Verification Requirements

Requirements family Requirement Recommended cheat sheet

V7.1 Log Content Requirements Logging https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Logging_Cheat_Sheet.md

V7.2 Log Processing Requirements Logging https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Logging_Cheat_Sheet.md

V7.3 Log Protection Requirements Logging https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Logging_Cheat_Sheet.md

V7.4 Error Handling Error Handling https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Error_Handling_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Logging_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Error_Handling_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Error_Handling_Cheat_Sheet.md

18

1.8 V8: Data Protection Verification Requirements

Requirements family Requirement Recommended cheat sheet

V8.1 General Data Protection Data Protection Impact Assessment Ask EMSA for DPIA template

V8.2 Client-side Data Protection N/A

V8.3 Sensitive Private Data Data Protection Impact Assessment Ask EMSA for DPIA template

1.9 V9: Communications Verification Requirements

Requirements family Requirement Recommended cheat sheet

V9.1 Communications Security

Requirements

HTTP Strict Transport Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md

 Transport Layer Protection https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Transport_Layer_Protection_Cheat_Sheet.md

 TLS Cipher String https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/TLS_Cipher_String_Cheat_Sheet.md

V9.2 Server Communications Security

Requirements

N/A

1.10 V10: Malicious Code Verification Requirements

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_Cipher_String_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/TLS_Cipher_String_Cheat_Sheet.md

Requirements family Requirement Recommended cheat sheet

V10.1 Code Integrity Controls Third Party Javascript Management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Third_Party_Javascript_Management_Cheat_Sheet.

md

V10.2 Malicious Code Search N/A

V10.3 Deployed Application Integrity

Controls

Docker Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Docker_Security_Cheat_Sheet.md

1.11 V11: Business Logic Verification Requirements

Requirements family Requirement Recommended cheat sheet

V11.1 Business Logic Security

Requirements

Abuse Case https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Abuse_Case_Cheat_Sheet.md

1.12 V12: File and Resources Verification Requirements

Requirements family Requirement Recommended cheat sheet

V12.1 File Upload Requirements Protect File Upload Against Malicious File https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Protect_FileUpload_Against_Malicious_File.md

V12.2 File Integrity Requirements Protect File Upload Against Malicious File https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Protect_FileUpload_Against_Malicious_File.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Abuse_Case_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Protect_FileUpload_Against_Malicious_File.md

20

 Third Party Javascript Management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Third_Party_Javascript_Management_Cheat_Sheet.

md

V12.3 File execution Requirements N/A

V12.4 File Storage Requirements N/A

V12.5 File Download Requirements N/A

V12.5 File Download Requirements Server Side Request Forgery (SSRF) attack

Prevention

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Server_Side_Request_Forgery_Prevention_Cheat_S

heet.md

 Unvalidated Redirects and Forwards https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.

md

1.13 V13: API and Web Service Verification Requirements

Requirements family Requirement Recommended cheat sheet

V13.1 Generic Web Service Security

Verification Requirements

Web Service Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Web_Service_Security_Cheat_Sheet.md

 Server Side Request Forgery (SSRF) attack

Prevention

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Server_Side_Request_Forgery_Prevention_Cheat_S

heet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Third_Party_Javascript_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Web_Service_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Web_Service_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.md

V13.2 RESTful Web Service Verification

Requirements

REST Assessment https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/REST_Assessment_Cheat_Sheet.md

 REST Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/REST_Security_Cheat_Sheet.md

 Cross-Site Request Forgery (CSRF) attack

Prevention

https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.md

V13.3 SOAP Web Service Verification

Requirements

XML Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/XML_Security_Cheat_Sheet.md

V13.4 GraphQL and other Web Service

Data Layer Security Requirements

N/A

1.14 V14: Configuration Verification Requirements

Requirements family Requirement Recommended cheat sheet

V14.1 Build Docker Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Docker_Security_Cheat_Sheet.md

V14.2 Dependency Vulnerable Dependency Management https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Vulnerable_Dependency_Management_Cheat_Sheet

.md

 Docker Security https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Docker_Security_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Assessment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Assessment_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/REST_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Vulnerable_Dependency_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Vulnerable_Dependency_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Vulnerable_Dependency_Management_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Docker_Security_Cheat_Sheet.md

22

V14.3 Unintended Security Disclosure

Requirements

Error Handling https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Error_Handling_Cheat_Sheet.md

V14.4 HTTP Security Headers

Requirements

Content Security Policy https://github.com/OWASP/CheatSheetSeries/blob/master/che

atsheets/Content_Security_Policy_Cheat_Sheet.md

V14.5 Validate HTTP Request Header

Requirements

N/A

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Error_Handling_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Error_Handling_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Content_Security_Policy_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Content_Security_Policy_Cheat_Sheet.md

JASPER Horizontal Platform

Technical Overview

Jasper Technical overview

Page 1 of 10
0

Document History

Title Jasper Horizontal Platform. Technical Overview

Version 1.3 from 06/11/2019

Jasper Technical overview

Page 2 of 10
0

TABLE OF CONTENTS

TABLE OF CONTENTS ...2

1. Introduction..3

2. Overview of EMSA’s Jasper Horizontal Platform...3

3. Integration of new Reporting Modules..4

3.1 LDAP configuration ...4

3.2 Jasper Server ..4

3.2.1 Roles ..4

3.2.2 Repository ..6

4. Delivery Package ...10

Jasper Technical overview

Page 3 of 10
0

1. Introduction

This document provides an overview of EMSA’s Jasper Horizontal Platform and indications of the steps needed to

add new reporting modules to this Horizontal Platform.

2. Overview of EMSA’s Jasper Horizontal Platform

EMSA’s Jasper Horizontal Platform is a JasperSoft installation configured and tuned to work closely integrated in

EMSA’s environments. It serves as a Business Intelligence and Reporting platform providing these services to

EMSA’s Maritime Applications (MarApps).

The next figure depicts Jasper Horizontal Platform:

Access Management / Single SignOn

Portal

Jasper Server 1 Jasper Server 2

Jasper Jasper ETL

Weblogic Weblogic

MarApp A

Database Tier

MarApp B

MarApp C

Operational

Schema

Operational

Schema

Operational

Schema

Statistical Statistical Statistical
Schema Schema Schema

Jasper

Supporting

database

• Two servers running Linux Redhat V7.4 are the base infrastructure for EMSA’s Jasper Horizontal Platform.

Those servers are identified in the figure above as “Jasper Server 1” and “Jasper Server 2”;

• JasperSoft V7.1 is deployed in a cluster of 2 Weblogic 12c application servers and having the supporting

database running in the database tier (see below);

• The database tier is implemented on top of Oracle DBMS 12c;

• Each MarApp that uses Jasper Services will have at least 2 different schemas: the Operational schema

used by the MarApp and the Statistical Schema used by Jasper;

• ETL processes are responsible to Extract information from the Operational schema, Transform and Load

into the Statistical Schema;

Jasper Technical overview

Page 4 of 10
0

• It should be noted that we currently have several types of ETL processes, from the simplest ones using

view, materialized views or PL/SQL procedures to more complex ETL processes running on top of Talend

V6.3.1 (part of the JasperSoft suite);

• User accesses to Jasper functionalities are controlled/managed through the EMSA’s Access Management

and Single Sign-On;

• Jasper Web interfaces are usually available in EMSA’s Portal.

Please note that versions indicated are the ones currently deployed in EMSA environments. However, due to

EMSA’s patching policies, they might change over time. Final versions to be considered in any future development

shall be agreed at the Project Kick-off meeting.

3. Integration of new Reporting Modules

New reporting modules can be added to Jasper Horizontal platform following the integration process described in

next chapters.

It must be noted that the steps described here are a guideline for standard Reporting Modules. However, new

needs can be discussed but they have to be fully detailed and justified. EMSA will assess the need and the new

request being made and will take a decision on how to proceed (accepting or rejecting).

3.1 LDAP configuration

Any standard new application that will be available in Jasper will have two Roles:

• ROLE_APPLICATIONNAME_RW;

• ROLE_APPLICATIONNAME_RO;

In LDAP these two roles are represented by two groups, their members will have the permissions that the role has

in Jasper.

To add a new report module or application it is necessary to create two new groups and add the users to those

groups. The name of the groups will be:
• JASPER_APPLICATIONNAME_RW;

• JASPER_APPLICATIONNAME_RO;

3.2 Jasper Server

This chapter will show the necessary steps to configure a new application in Jasper Server.

3.2.1 Roles

It is necessary to have two Roles in Jasper Server. These roles represent the two groups created before in LDAP.

The following steps are necessary to create the necessary roles:

Jasper Technical overview

Page 5 of 10
0

3.2.1.1 Access Roles Menu

After login, click in menu Manage -> Roles

3.2.1.2 Add Roles

Click in Add Role button to create new Roles.

And add the two new Roles to be created:

• ROLE_APPLICATIONNAME_RW;

• ROLE_APPLICATIONNAME_RO;

Jasper Technical overview

Page 6 of 10
0

3.2.2 Repository

In the repository three folders will exist:

• DATA SOURCES;
o This folder will have the necessary data sources to the required domains, each data

source needs to be created in WebLogic application server and then created here with
JNDI reference;

• DOMAINS;
o This folder will have the necessary domains to the required reports or adhoc views;

• RESTRICTED;
o This folder will have the required reports or adhoc views;

Each of these folders will have one folder named APPLICATION_NAME that will contain the respective resources

for the application.

To access the repository, reproduce the followed steps:

1. After login, click in menu Manage -> Repository

Jasper Technical overview

Page 7 of 10
0

2. The folder structure reference before will stay like the followed picture

3.2.2.1 Data Sources

Under the folder Data Source it is necessary to create a folder to the required Application.

The following images present the permissions under the folder Data Sources.

The folder data source will have No Access permission to ROLE_APPLICATIONNAME_RW and

ROLE_APPLICATIONNAME_RO.

Jasper Technical overview

Page 8 of 10
0

The folder data source -> APPNAME will have Execute Only permission to ROLE_APPLICATIONNAME_RO and

Read Only permission to ROLE_APPLICATIONNAME_RW.

3.2.2.2 Domains

Under the folder Domains it is necessary to create a folder to the required Application.

The following images present the permissions under the folder Domains.

The folder domains will have No Access permission to ROLE_APPLICATIONNAME_RW and

ROLE_APPLICATIONNAME_RO.

Jasper Technical overview

Page 9 of 10
0

The folder domains -> APPNAME will have Execute Only permission to ROLE_APPLICATIONNAME_RO and

Read Only permission to ROLE_APPLICATIONNAME_RW.

3.2.2.3 Restricted

Under the folder Restricted it is necessary to create a folder to the required Application.

The following images present the permissions under the folder Restricted.

The folder restricted will have No Access permission to ROLE_APPLICATIONNAME_RW and

ROLE_APPLICATIONNAME_RO.

Jasper Technical overview

Page 10 of 10
0

The folder restricted -> APPNAME will have Read Only permission to ROLE_APLICATIONNAME_RO and

Read+Write permission to ROLE_APPLICATIONNAME_RW.

4. Delivery Package

Any new report module must be delivered to EMSA in a “Delivery Package” containing all documentation and

resources needed to deploy it at EMSA environments. The “Delivery Package” shall contain as a minimum:
• Roles definition and permissions

• Datasource definitions and creation scripts

• Database package
o Full set of script (creates schemas from scratch)
o Version scripts (updates schemas from version n to version n+1)

• Jasper Domains

• Adhoc views, Reports and Dashboards

[End of Document]

EMSA SOA Guidelines & Rules

Draft - 20190926

Date:02/12/2019

PUBLICATION TITLE

 Page 1 of 19

Document History

Version Date Changes Prepared Approved

Final 02/12/2019 Publish EMSA

PUBLICATION TITLE

Page 2 of 19

Table of Contents

1. Introduction .. 4

2. Rules ... 4
2.1 Service Naming Convention .. 4
2.2 Service Versioning .. 4
2.3 Data Format .. 5
2.4 Central Reference Databases ... 5
2.5 Service and Application Monitoring ... 5
2.6 System-to-System Interfaces .. 6
2.7 Authentication and authorisation ... 6

2.7.1 System Accounts ... 6
2.7.2 System Roles ... 7

2.8 Testing ... 7

Appendix A Data Formats for data exchange between EMSA Maritime Applications 8

Appendix B EMSA guidelines on use of web services and information exchange 9

1. Methods of exchanging data between applications, Integration Styles. ... 9
1.1 Simple Object Access Protocol (SOAP) web services .. 9
1.2 REST web services (XML payload) .. 9
1.3 REST Web services (JSON payload) ... 10
1.4 Java Messaging Services (JMS) ... 11
1.5 Shared database tables .. 11
1.6 Remote procedure calls (RPC), CORBA, COM … ... 11

2. Message formats ... 11
2.1 Human readable formats ... 11

2.1.1 eXtensible Mark-up Language (XML) .. 11
2.1.2 JavaScript Object Notation (JSON) ... 12
2.1.3 Comma separated values (CSV) ... 13

2.2 Binary formats ... 13
2.2.1 Coherence Portable Object Format (POF) .. 13
2.2.2 AVRO ... 13
2.2.3 Protocol Buffers .. 14
2.2.4 Thrift ... 14
2.2.5 Java serialized objects ... 14

Appendix C Application Monitoring Format ... 16

PUBLICATION TITLE

 Page 3 of 19

List of Abbreviations

ATLAS EMSA Architecture Repository

SOAP Simple Object Access Protocol

REST Representational State Transfer

JMS Java Messaging Service

HTTP Hypertext Transport Protocol

XML eXtensible Mark-up Language

JSON JavaScript Object Notation

API Application Programming Interface

APCG ICT Architecture and Planning Coordination Group

RPC Remote Procedure Call

RMI Remote Method Invocation

IIOP Internet Inter-Orb Protocol

COM Component Object Model

TPM Technical Project Manager

ESB Enterprise Service Bus

CAB Change Authority Board

APCG Architecture and Planning Coordination Group

ICT-SG ICT Steering Group

PUBLICATION TITLE

Page 4 of 19

1. Introduction
This document contains a set of rules that should be followed by Project Managers during the design of system

interfaces in order to allow for a better integration within the SSN Ecosystem. EMSA Maritime Applications will

need to comply with the rules defined below, whilst for corporate applications we recommend these rules to be

applied.

2. Rules
2.1 Service Naming Convention

Use the common naming format to identify your services within the SSN Ecosystem.

Each service is identified by a “Service ID”. A Service ID indicates the “function” of the Service within the SSN

Ecosystem, by means of a well-known acronym or abbreviation of the underlying information or message content.

For the sake of example, the ID of the service that provides information on Countries shall start by the acronym of

the application or solution, the Central Country Database, that implements the service followed by ‘/’ (i.e. CCD/)

followed by the name of the service The name of the service shall be indicative of the information or function

provided by the service.

A Service ID is unique, i.e. a Service ID should identify one and only one Service.

A Service ID is a string with the following format:

Maximum Length 50 characters

Character set [A-Za-z0-9\-\._]

Examples CCD/CountryInfo

EO/IMAGE

2.2 Service Versioning

Services should be implemented using versioning to enable:

■ Evolution of services without concerns for dependencies

■ Stability of dependent services

This approach should be applied to all new services or updates. To allow continuity and at the same time ensuring

stability of dependent services and systems, at least 1 year of backwards compatibility, starting at the date on

which a new, non-compatible version is released in production, needs to be maintained. This 1-year stability period

can only be reduced in case ALL service consumers agree. In order to assure the timely adaptation of clients, the

TPM shall inform the TPMs of all registered – in Atlas – clients as soon as the decision to create a new version of a

service, the TPM shall indicate if he expects this new version will or will not be backwards compatible1. He shall

also distribute the ICD for the new service version as soon it has been approved

The versioning schema to be used is defined in ‘Appendix B – EMSA guidelines on use of web services and

information exchange’. As described in the appendix each service shall have at least a major and a minor version

number. Optionally it can also have a third part indicating build number or bug fix version.

1 See e.g. https://www.gcloud.belgium.be/rest/#api-evolution for guidelines on how to evolve a REST + JOSN service without breaking
backwards compatibility

https://www.gcloud.belgium.be/rest/#api-evolution

PUBLICATION TITLE

 Page 5 of 19

A service’s major version shall only change if there is a modification to the interface, i.e. in case the back-end

implementation changes but the interface remains the same, the version number will not change. In such case the

TPM shall ensure that the behaviour of the service does not change in a way that requires changes to its clients.

In any services that are accessible over a URL, the major version number should always be part of the URL. None

of the other parts of the version number may be part of the URL as that may require existing clients to update

whenever a minor change to the version occurs.

2.3 Data Format

For data exchange between applications / services, the data formats defined in ‘Appendix A: Data Formats for data

exchange between EMSA Maritime Applications’ shall be the preferred choice.

In case an EMSA defined data format (CDF)2 3 needs adaptation to be able to support the use case for a new

service, the TPM shall request a review to APCG. Where no EMSA defined Canonical Format has been defined,

the use of industry accepted standards, such as those defined by OGC, OASIS, W3C, etc. shall be preferred.

2.4 Central Reference Databases

Countries, Organizations, Ports, and Geographical Areas: use of the common databases (CSD, CCD, COD, CLD,

and CGD) for reference purposes is mandatory when dealing with this type of data.

Projects need to agree with the reference database implementations whether they will use the subscription service

– thus listening for changes announced by the reference DB and updating the internal data accordingly – or if they

will directly query the reference data using the available service interfaces. This choice will involve a trade-off

between effort, performance and availability. The TPM of the reference DB application shall be involved before

deciding the integration style.

2.5 Service and Application Monitoring

To harmonize and improve the monitoring of System Incidents and SLA compliance reporting, all applications shall

have a single endpoint available that reports the status of the application in an unambiguous way. If the application

is made up of multiple components (typically at least there is an application server and a database), the status of

each of these components should be represented, either as part of the return message or by providing a separate

endpoint per component. For each of the components of the application the following data shall be returned:

■ Name of the component

■ Version of the component

■ Status, specified by one of the following values: OK, WARNING, FAILED

The standard format for application monitoring information is specified in ‘Appendix C: Application Monitoring

Format’.

If an application is deployed on a webserver/application server, it shall have a http endpoint that can be used for

monitoring purposes. The health checks for all individual components should be combined on a single html page

and this page should avoid the use of any client-side scripting and not rely on any graphical representation of the

status.

If the application is not deployed on a web server another method for checking the health needs to be provided;

this could be for example a JMX server or a Unix script allowing to reliably check the health of each

service/component shall be delivered.

2 For XML CDF formats see the latest tagged release in http://pforge01.emsa.local/svn/repos/cdf/tags/
3 For AVRO CDF formats see master branch of https://gitlab.com/emsa/cdf/avro

PUBLICATION TITLE

Page 6 of 19

2.6 System-to-System Interfaces

The guidelines given in ‘Appendix B: EMSA guidelines on use of web services and information exchange’ shall be

followed for all system to system service interfaces.

The SLA of the service should be specified such that it can be monitored via ESB operational monitoring over a

given time window.

Figure 1 Available Service Health metrics in OSB

Operational monitoring metrics for the service shall be activated and monitored via NAGIOS, allowing to report on

service SLA compliance.

The specification for the service shall include:

■ Aggregation interval for the service. Unless there is a specific reason for deviation, e.g. a very high or very low

frequency of calls to the service, this should be 10 minutes.

■ Average response time over the aggregation interval

■ Messages: maximal and minimal number of invocations of the service over the aggregation interval

■ Errors: Acceptable number of errors over the aggregation interval

The BRAT shall include a section detailing the changed/new interfaces resulting from the requested change. No

direct connections between applications shall be allowed without prior consultation of APCG. Whenever a new

interface between applications is created or an existing interface is modified, the service shall be proxied through

ESB.

Each interface shall be put in the EMSA Architecture Repository, including information on the client applications,

SLA, main technical characteristics. The TPM of the application implementing the interface is responsible for

registering the service in ATLAS and keeping its information up-to-date. The TPMs of each application using the

interface are responsible for registering their use of the interface in ATLAS.

The Project Plan should have a milestone where the service interface is documented (ICD). The ICD is reviewed

and approved by the client application TPMs, in cooperation with the client application development contractor.

Only TPMs that have registered their application(s) as a client, will be notified and consulted when there are

planned changes to the interface. A reasonable time limit for reviewing the changes will be set, in order not to delay

too much the design and implementation of applications. If no agreement can be reached within this period, the

issue will be raised to APCG by the TPM of the application implementing the service.

2.7 Authentication and authorisation

System-to-System interfaces shall always be subject to Authentication and Authorization.

An accountID is authorized to use a System-to-System interface if it is authenticated and authorized to do so.

2.7.1 System Accounts

For accessing System-to-System interfaces, applications shall use the concept of a “System Account” defined in

IdM-V2. “System Accounts” are stored on a dedicated LDAP branch and are not mixed with “Human Accounts”.

Authentication shall succeed for an active “System Account” and a matching password.

PUBLICATION TITLE

 Page 7 of 19

2.7.2 System Roles

“System Roles” are also segregated; they are not mixed with “Human Roles”.

Each application shall define a set of “System Roles” that can only be associated to “System Accounts” (in IdM-V2,

through Profiles)

Authorization shall succeed if the accountID is member of the role (or roles) that grants permission to use the

System-to-System interface

2.8 Testing

Client applications define the expected behaviour through test cases (“Client Test Cases”) which are implemented

(e.g. by test contractor) and delivered to the service development contractor in due time. The test report shall

include the results of the execution of Client Test Cases.

The application contractor developing a service shall, at the earliest possible time after agreement of the ICD,

deliver a mock implementation of the service that can be used by client applications to prepare the integration.

PUBLICATION TITLE

Page 8 of 19

Appendix A Data Formats for data exchange between

EMSA Maritime Applications

Message Use case Recommended

format

External link

Vessel Positions
• Low frequency of

messages

• Human readable

• Exchange with 3rd
parties, especially
those with lower
technical proficiency

Position CDF (XML)

Vessel Positions
• High frequency of

messages

Position CDF (AVRO)

Static and Voyage

information
• Low frequency of

messages

• Human readable

• Exchange with 3rd
parties, especially
those with lower
technical proficiency

VoyageInfo CDF (XML)

Static and Voyage

information
• High frequency of

messages

VoyageInfo CDF

(AVRO)

Vessel Particulars
• Low frequency of

messages

• Human readable

• Exchange with 3rd
parties, especially
those with lower
technical proficiency

ShipParticulars CDF

(XML)

Geographical Data
• Display in Google

Earth

KML

Geographical Data
• Data exchange

between services

GML

Alerts
• Exchange of alert

information between
applications

Common Alerting

Protocol (CAP, XML)

PUBLICATION TITLE

 Page 9 of 19

Appendix B EMSA guidelines on use of web services and

information exchange

As EMSA’s maritime applications are and will be composed of services implemented by many different teams and

contractors, that today do not always collaborate optimally, there is a need to harmonise the architectural styles

within these applications. One of the aspects of architectural style is how services/applications exchange data

internally or with external system. Architecture Planning and Coordination Group (APCG) chose to address this

subject first as the interchange of information has the greatest and most immediate impact on all applications

composing the SSN ecosystem.

This appendix tries to give a brief overview of the potential ways to exchange data between systems, presenting

pros and cons of each and provide a guideline for when to use what integration style.

1. Methods of exchanging data between applications,

Integration Styles.
1.1 Simple Object Access Protocol (SOAP) web services

Description

SOAP is a protocol, is strongly typed and has a strict specification. SOAP is not limited to HTTP (e.g. JMS or SMTP

may be used a transport mechanism). End-to-end security is supported through WS-* specifications, in contrast to

REST where federated security (e.g. ADFS) is still work in progress (e.g. OpenID). SOAP has support for

distributed, two-phase commit transactions, using WS-Atomic Transactions.

There are many different WS-* specifications, multiple WS-* can address the same issue, so it is not always clear

when to use which one and a particular WS-* spec could not be supported by all vendors. In limited cases, small

differences in implementation between infrastructure vendors can cause interoperability problems.

SOAP uses interfaces and named operations to expose business logic as opposed to REST which exposes

resources.

SOAP has a set of standard specifications. WS-Security is the specification for security in the implementation. It is

a detailed standard providing rules for security in application implementation. Like this we have separate

specifications for messaging, transactions, etc. Unlike SOAP, REST does not have dedicated concepts for each of

these.

Applicability

Recommended integration style for API style integration when there is need for a tight control over the interface.

This is most applicable when integrating with parties outside of EMSA or when contract negotiation will be

applicable on changes to the interface.

SOAP will also be the preferred integration style if additional functionality such as sending replies to different

endpoints, asynchronous invocations, transactionality or other WS-* features are required.

If combined with using JMS for message exchange it can provide further decoupling of applications and increased

reliability and scalability.

1.2 REST web services (XML payload)

Description

REST stands for Representational State Transfer and is not a protocol but rather an architectural style. Due to this,

more attention needs to be paid to the quality of the implementation as opposed to web services using SOAP.

Specifically the API design (REST URIs need to be resources, not methods), proper usage of HTTP verbs (GET to

PUBLICATION TITLE

Page 10 of 19

query resources, POST to create a new resource, PUT to update a resource and DELETE to delete a resource),

discoverability (e.g. messages should contain links to next action(s) to be performed) and re-use of standard

HTTP/web technologies (e.g. use HTTP authentication instead of implementing an own custom authentication

protocol for the service, allow for caching of GET requests, …). For web services providing a business method (e.g.

performing a calculation based on inputs) SOAP will usually be a better match. REST on the other hand may be a

more natural fit for exposing information (resources).

For all REST services implemented by EMSA maritime applications, an OpenAPI 3.04 (or later) specification will be

needed.

• Whole of the web works based on REST style architecture. Consider a shared resource repository and

consumers access the resources.

• REST messages should be self-contained and should help consumer in controlling the interaction between

provider and consumer (example, links in message to decide the next course of action). But SOAP doesn’t has

any such requirements.

• REST does not enforce message format as XML or JSON or etc.

REST follows stateless model. SOAP has specifications for stateful implementation as well.

Applicability

Recommended integration style for API style integration when EMSA has a firm control over the interface and

changes can be agreed on a less formal level (i.e. a simple agreement by the CAB will be enough).

Using XML as the message format is recommended rather than using JSON format as there is better tool support

for validation and transformation of messages. No industry standards exist for documenting or specifying the

content of a JSON message.

All services providing a REST interface must create and maintain a OpenAPI document describing all supported

operations.

1.3 REST Web services (JSON payload)

Description

All recommendations and cautions mentioned for REST Web Services (XML) apply here as well. Additionally,

JSON format has more limited tool support, e.g. no validation of the message against DTD or Schema, no

standards for message transformation such as to XSLT or XQuery.

Applicability

Allowed integration style for API style integration when EMSA has a firm control over the interface and changes

can be agreed on a less formal level. The recommendation is to use this only for integration between components

of the same application.

Can be used instead of the XML message payload, if either:

1. interface will be consumed in a web browser or
2. message size is very important, but you cannot use AVRO or protocol buffers

4 https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md

PUBLICATION TITLE

 Page 11 of 19

1.4 Java Messaging Services (JMS)

Description

JMS can be used to achieve a loose coupling between applications exchanging data, allows for good scalability

and reliable message delivery by relying on the underlying messaging infrastructure.

JMS based integrations will typically be more suitable for asynchronous communications.

The drawbacks are the additional complexity in setting up and configuring the messaging infrastructure.

Applicability

Recommended integration style for event driven data exchange between applications deployed in a Java

Application Server.

1.5 Shared database tables

Description

Uses tables in schema accessed by multiple applications for exchanging data.

Applicability

Creates a tight coupling between applications.

This integration style is not acceptable at EMSA, except for temporary integration between 2 application and only

after consultation of APCG. The reasons for choosing this integration style should always be presented to the

APCG which will then provide a recommendation to the ICT Steering Group.

1.6 Remote procedure calls (RPC), CORBA, COM …

Description

These integration methods provide integration based on an API to be called by the client application. Whilst these

may have performance benefits, especially if both applications run within the same machine or VM, it also reduces

interoperability, e.g. both applications will usually need to be implemented in the same technology (Java IIOP,

COM) or use proprietary infrastructure (CORBA).

Applicability

In exceptional cases this may be an acceptable method of sharing information; however, the reasons for choosing

this integration method should be presented to the APCG which will then provide a recommendation to the ICT

Steering Group.

2. Message formats

Generally, there are 4 options when defining the message format for exchange of data between applications: XML,

JSON, CSV or Binary objects.

2.1 Human readable formats
2.1.1 eXtensible Mark-up Language (XML)

Description

Using XML for exchanging data has the following main benefits:

PUBLICATION TITLE

Page 12 of 19

■ Human readable (useful for debugging, problem resolution).

■ Supported by all major programming language and platforms.

■ Commonly available developer skill.

■ Message format is well defined. Strong support for message specification through either XSD (preferred) or

DTD. This allows both validation (at run time) and documentation using a standard syntax.

■ Cross platform / technology independent, e.g. 1 service implemented in PHP and running on a Windows Server

can exchange messages with a Java application hosted on a Unix server.

■ Good tool support: schema editors, validator, transformation, etc.

Disadvantages:

■ XML has as its major disadvantage that it can be very verbose and therefore may be less suitable for

exchanging short messages at a very high rate.

When defining an XML format, the best practice at EMSA should be to be as explicit as possible. This will enhance

the understanding of the interface and reduce implementation errors and complexity. On the other hand, being

explicit may require interface version to be updated more frequently. Yet, such updates will likely require changes

or at least testing for compatibility with all of the service’s client, so forcing an explicit version upgrade should be

considered an advantage.

Applicability

Should be the preferred choice when exchanging large datasets at a low rate.

Is also the recommended format when exchanging data with 3rd parties as the possibilities for validation of the

data and format are more advanced and more well-known than for the other formats described in this document.

2.1.2 JavaScript Object Notation (JSON)

Description

Using JSON for exchanging data has the following main benefits:

■ Human readable (useful for debugging, problem resolution).

■ Commonly available developer skill.

■ Cross platform / technology independent, e.g. 1 service implemented in PHP and running on a Windows Server

can exchange messages with a Java application hosted on a Unix server.

■ Compact compared to XML, however still much more verbose than other, binary, options described below.

■ Especially useful for exchanging data between the back-end services and the Web User Interface as JSON

can be natively handled by all browser supporting JavaScript.

■ Most familiar format for most web frontend developers.

Disadvantages:

■ The main draw-back of JSON is the lack of standards and tool support. Especially defining and validating the

contents of a JSON message is limited to humanly readable documentation only, excluding the use of

commonly available validators, and thus may suffer different interpretation between the service provider and

service client.

Applicability

Should only be used for providing data that will be displayed, directly, in a web browser. I.e. this format should only

be used for services invoked from a web browser. Even in this case, whenever data is exchanged in JSON format,

both service client and service provider contracts need to be sufficiently flexible to allow dealing with incompatible

interpretations of the message format

PUBLICATION TITLE

 Page 13 of 19

2.1.3 Comma separated values (CSV)

Description

Data can be exchange as Comma Separated Value filed. This is often useful when data will be generated

manually, example as an export from an Excel file.

Advantages:

■ Can be exported from MS Excel or another spreadsheet

■ May be the most suitable option when interacting with a less technically competent 3rd party.

Disadvantages:

■ No standards for defining the message (e.g. various field delimiters are possible)

■ Lack of tool support, e.g. validators and transformation

Applicability

Should only be used for exchanging data to be consumed by end users / power users, where the usage will be

limited, or no development resources are available.

2.2 Binary formats

Many different options exist. Below some of the most appropriate to EMSA are discussed.

2.2.1 Coherence Portable Object Format (POF)

Description

Coherence has a proprietary data format which is designed to be compact and minimise resource usage.

Advantages:

■ Small message size, i.e. very suitable for exchanging messages at high rate over the network

■ Limited resource usage, e.g. CPU

Disadvantages:

■ Proprietary format which requires the use of Oracle / Tangosol libraries and associated licensing agreements

■ Limited language support (only Java, .Net and C++)

■ Not humanly readable

■ POF requires the developer to implement routines in order to serialize and deserialize the objects. The

(de)serialisation code will need to be provided as a library to all service clients.

Applicability

Should only be used in conjunction with Oracle Coherence.

2.2.2 AVRO

Description

Advantages:

■ Small message size, i.e. very suitable for exchanging messages at high rate over the network

■ Limited resource usage, e.g. CPU

PUBLICATION TITLE

Page 14 of 19

■ Navigating an object tree can be easier than equivalent XML

■ Message format is well defined

Disadvantages:

■ Future / backward compatibility can be trickier compared to XML

■ Not humanly readable

■ No tools for transforming between message formats or versions

Applicability

Because AVRO is the most often used format in conjunction with Kafka queues, which are being adopted in EMSA

by the STAR Streaming project, the preferred binary data exchange format at EMSA will be AVRO. As such,

schemas for Vessel Positions and Vessel Voyage Information have been implemented and should be used for the

exchange of these types of data between EMSA maritime applications.

2.2.3 Protocol Buffers

Description

This was originally developed at Google and has since been open sourced. As compared to POF it has similar

goals for minimising resource usage (CPU and network) whilst also providing support for a larger number of

languages. Additionally, usage does not require any licensing.

Advantages:

■ Small message size, i.e. very suitable for exchanging messages at high rate over the network

■ Limited resource usage, e.g. CPU

■ Navigating an object tree can be easier than equivalent XML

■ Message format is well defined

Disadvantages:

■ Future / backward compatibility can be trickier compared to XML

■ Not humanly readable

■ No tools for transforming between message formats or versions

Applicability

Not recommended at EMSA, AVRO should be used instead.

2.2.4 Thrift

Description

Is comparable to Protocol Buffers and AVRO. Like AVRO, this format is also maintained by the Apache foundation.

The goals and advantages are very similar, we therefore recommend using only AVRO at EMSA as this will

improve interoperability and limit proliferation of similar but different technologies.

Applicability

Not recommended at EMSA, AVRO should be used instead.

2.2.5 Java serialized objects

Description

PUBLICATION TITLE

 Page 15 of 19

Java Serialization is an out-of-the-box java feature. It has better performance characteristics than the human

readable formats and due to ease of use can be a convenient choice for (short term) storage of data inside of an

application.

Advantages:

■ Convenience, out-of-the-box java feature

Disadvantages:

■ No support for exchanging data with other programming languages

■ Dependent on the version and implementation of the JDK.

■ Not possible to maintain backwards compatibility other than through maintaining a separate implementation for

older versions.

Applicability

Not recommended for exchange of data between applications / services. This format can however be used for

transient storage within a single application.

PUBLICATION TITLE

Page 16 of 19

Appendix C Application Monitoring Format

All applications must provide a minimum of one monitoring end-point.

The monitoring end-point is a dedicated and public URL that, when requested, returns an indication of the

application health.

The monitoring end-point must be compliant with the following specification:

5 choose format one and maintain consistency across the application

I. Health Check URL format: https://<FQDN>/healthcheck
II. The /healthcheck request implementation must go through all layers of the application (presentation layer,

business layer, database) in order to provide an accurate information about end-to-end status of the
application.

III. Making a request to the health check URL, will result in an XML or JSON5 response with one of the
following cases:

a. if the application is healthy (no issues detected), will return status OK,
b. if the application is NOT available, it will timeout,
c. if any problem detected in the application, will return, status NOT_OK, as a minimum.

Other information to better diagnose the detected issue could be added.
IV. Others health check URLs can be available for better and deeper monitoring points. In that case, the URL

format must be: https://<FQDN>/healthcheck/<monitoring point>

	System_and_Application_Technical_Landscape.pdf (p.1-34)
	A1-IAM Guide_abridged.pdf (p.35-73)
	A2-EMSA secure development requirements v01.pdf (p.74-129)
	A3-EMSA secure development recommendation guide v01.pdf (p.130-151)
	A4-EMSA_JASPER_Technical_Document.pdf (p.152-163)
	A5-EMSA_SOA_Guidelines_and_Rules.pdf (p.164-183)

