
Appendix 3
to Tender Specifications

Guidelines on
implementation
of web services
and information
exchange

Introduction and overview
As the Safenet Ecosystem is and will be composed of services implemented by many different

applications that today do not always collaborate the SSN Ecosutem ICT architecture group considers

there is a need to harmonise the architectural styles within these applications. One of the aspects of

architectural style is how services/applications exchange data internally or with external system. We

chose to address this subject first as the interchange of information has the greatest and most

immediate impact on all applications composing the SSN ecosystem.

This document tries to give a brief overview of the potential ways to exchange data between

systems, give pros and cons of each and provide a guideline for when to use what integration style.

Methods of exchanging data between applications
Integration style Applicability

Integration style Applicability

Simple Object Access Protocol (SOAP) web

services
Is a protocol, is strongly typed and has a strict specification.

SOAP is not limited to HTTP (e.g. JMS or SMTP may be used a

transport mechanism). End-to-end security is supported

through WS-* specifications, in contrast to REST where

federated security (e.g. ADFS) is still work in progress (e.g.

OpenID). SOAP has support for distributed, two-phase

commit transactions, using WS-Atomic Transactions.

There are many different WS-* specifications, multiple WS-*

can address the same issue, so it is not always clear when to

use which one and a particular WS-* spec could not be

supported by all vendors. In limited cases, small differences in

implementation between infrastructure vendors can cause

interoperability problems.

SOAP will uses interfaces and named operations to expose

business logic as opposed to REST which exposes resources.

SOAP has a set of standard specifications. WS-Security is the

specification for security in the implementation. It is a

detailed standard providing rules for security in application

implementation. Like this we have separate specifications for

messaging, transactions, etc. Unlike SOAP, REST does not

have dedicated concepts for each of these.

Recommended integration style for

API style integration if there needs

to be a tight control over the

interface. This is most applicable

when integrating with parties

outside of EMSA or when contract

negotiation will be applicable on

changes to the interface.

SOAP will also be the preferred

integration style if additional

functionality such as sending replies

to different endpoints,

asynchronous invocations,

transactionality or other WS-*

features are required.

If combined with using JMS for

message exchange it can provide

further decoupling of applications

and increased reliability and

scalability.

REST web services (XML)
REST stands for Representational State Transfer and is not a

protocol but rather an architectural style. Due to this, more

attention needs to be paid to the quality of the

implementation as opposed to web services using SOAP.

Specifically the API design (REST URIs need to be resources,

not methods), proper usage of HTTP verbs (GET to query

resources, POST to create a new resource, PUT to update a

resource and DELETE to delete a resource), discoverability

(e.g. messages should contain links to next action(s) to be

performed) and re-use of standard HTTP/web technologies

(e.g. use HTTP authentication instead of implementing an

own custom authentication protocol for the service, allow for

caching of GET requests, …). For web services providing a

business method (e.g. performing a calculation based on

inputs) SOAP will usually be a better match. REST on the other

Recommended integration style for

API style integration when EMSA

has a firm control over the interface

and changes can be agreed on a

less formal level (i.e. a simple

agreement by the CAP will be

sufficient).

Using XML as the message format is

recommended rather than using

JSON format as there is better tool

support for validation and

transformation of messages. Also

no standard exists for documenting

or specifying the content of a JSON

Integration style Applicability

hand may be a more natural fit for exposing information

(resources).

REST does not define a contract for the service. Usage of the

services will rely on documentation provided to the developer

and validation of implementation of both client and server

will be harder as opposed to SOAP web services. Web

Application Description Language (WADL) is an attempt to

formally define the API exposed by a REST based web service,

but has not yet been standardised by W3C. Nevertheless all

REST implementations at EMSA should deliver (and keep up

to date) a WADL document describing the API as well as a

human readable API user guide.

 Whole of the web works based on REST style

architecture. Consider a shared resource repository

and consumers access the resources.

 REST messages should be self-contained and should

help consumer in controlling the interaction between

provider and consumer(example, links in message to

decide the next course of action). But SOAP doesn’t

has any such requirements.

 REST does not enforces message format as XML or

JSON or etc. But SOAP is XML based message

protocol.

 REST follows stateless model. SOAP has specifications

for stateful implementation as well.

message.

Integration style Applicability

REST Web services (JSON)
All recommendations and cautions mentioned for REST Web

Services (XML) apply here as well. Additionally, JSON format

has more limited tool support, e.g. no validation of the

message against DTD or Schema, no standards for message

transformation as opposed to XSLT and XQuery).

Allowed integration style for API

style integration when EMSA has a

firm control over the interface and

changes can be agreed on a less

formal level (i.e. a simple

agreement by the CAP will be

sufficient). Can be used instead of

the XML message format if either

1. interface will be consumed

by a web user interface

2. message size is very

important

Java Messaging Services (JMS)
JMS can be used to achieve a loose coupling between

applications exchanging data, allows for good scalability and

reliable message delivery by relying on the underlying

messaging infrastructure.

The drawbacks are the additional complexity in setting up and

configuring the messaging infrastructure.

Recommended integration style for

event driven data exchange.

Shared data base tables
Creates a tight coupling between applications and should be

avoided if possible.

In exceptional cases this may be an

acceptable method of sharing

information; however the reasons

for choosing this integration

method should be presented to the

SSN Ecosystem Architecture Group

which will then provide a

recommendation to the ICT Steering

Group.

Remote procedure calls (RPC), CORBA, …
These integration methods provide integration based on an

API to be called by the client application. Whilst these may

have performance benefits, especially if both applications run

within the same machine or VM, it also reduces

interoperability, e.g. both applications will usually need to be

In exceptional cases this may be an

acceptable method of sharing

information; however the reasons

for choosing this integration

method should be presented to the

Integration style Applicability

implemented in the same technology (RPC) or use proprietary

infrastructure (CORBA).

SSN Ecosystem architecture which

will then provide a recommendation

to the ICT Steering Group.

Message formats
Generally, there are 4 options when defining the message format for exchange of data between

applications: XML, JSON, CSV or Binary objects.

eXtensible Markup Language (XML)
Using XML for exchanging data has the following main
benefits:

 Human readable (useful for debugging, problem
resolution).

 Supported by all major programming language and
platforms.

 Commonly available developer skill.

 Message format is well defined. Strong support for
message specification through either XSD (preferred)
or DTD. This allows both validation (at run time) and
documentation using a standard syntax.

 Cross platform / technology independent, e.g. 1
service implemented in PHP and running on a
Windows Server can exchange messages with a Java
application hosted on a Unix server.

 Good tool support: schema editors, validator,
transformation, etc.

Disadvantages:

 XML has a major disadvantage that it can be very
verbose and therefore may be less suitable for
exchange short messages at a very high rate.

When defining an XML format, the best practice at EMSA
should be to be as explicit as possible. This will enhance the
understanding of the interface and reduce implementation
errors and complexity. On the other hand, being explicit may
require interface version to be updated more frequently. Yet,
such updates will likely require changes or at least testing for
compatibility with all of the service’s client, so forcing an
explicit version upgrade should be considered an advantage.

Applicability

Should be the preferred choice
when exchanging large datasets at a
low rate.
Is also the recommended format
when exchanging data with 3th
parties as the possibilities for
validation of the data and format
are more advanced and more well-
known than for the other formats
described in this document.

JavaScript Object Notation (JSON)
Using JSON for exchanging data has the following main
benefits:

 Human readable (useful for debugging, problem
resolution).

 Commonly available developer skill.

 Cross platform / technology independent, e.g. 1
service implemented in PHP and running on a
Windows Server can exchange messages with a Java
application hosted on a Unix server.

 Compact compared to XML, however still much more
verbose than other options described below.

 Especially useful for exchanging data between the
back-end services and the Web User Interface as
JSON can be natively handled by all browser
supporting JavaScript.

Applicability

Should only be used for providing
data that will be displayed, directly,
in a web browser. I.e. this format
should only be used for services
invoked by a graphical user
interface. Even in this case,
whenever data is exchanged in
JSON format, both service client
and service provider contracts need
to be sufficiently flexible to allow
dealing with incompatible
interpretations of the message
format.

Disadvantages:

 The main draw-back of JSON is the lack of standards
and tool support. Especially defining and validating
the contents of a JSON message is limited to humanly
readable documentation only, excluding the use of
commonly available validators, and thus may suffer
different interpretation between the service provider
and service client.

Comma separated values (CSV)
Data can be exchange as Comma Seperated Value filed. This is
often useful when data will be generated manually, example
as an export from an Excel file.

Advantages:

 Can be exported from MS Excel or other spreadsheet

 May be the most suitable option when interacting
with a less technically competent 3th party.

Disadvantages:

 No standards for defining the message (e.g. various
field delimiters are possible)

 Lack of tool support, e.g. validators and
transformation

Applicability

Should only be used for exchanging
datasets at a low rate with external
parties that do not have the
capacity to support one of the other
formats defined in this document.

Binary protocols
Many different options exist. Below some of the most
appropriate to EMSA are discussed.

Coherence Portable Object Format (POF)
Coherence has a proprietary data format which is designed to
be compact and minimise resource usage.

Advantages:

 Small message size, i.e. very suitable for exchanging
messages at high rate over the network

 Limited resource usage, e.g. CPU

Disadvantages:

 Proprietary format which requires the use of Oracle /
Tangosol libraries

 Limited language support (only Java, .Net and C++)

 Not humanly readable

 POF requires the developer to implement routines in
order to serialize and deserialize the objects. The
(de)serialisation code will need to be provided as a
library to all service clients.

Protocol Buffers
This was originally developed at Google and has been open
sourced. As compared to POF it has similar goals for
minimising resource usage (CPU and network) whilst also
providing support for a larger number of languages.
Additionally, usage does not require any licensing.

Advantages:

 Small message size, i.e. very suitable for exchanging
messages at high rate over the network

 Limited resource usage, e.g. CPU

Applicability

Should be the preferred choice
when exchanging data at a (very)
high rate between EMSA maritime
applications or between
components within the same 1
application.

It should never be used for
exchanging data with 3th parties.

The preferred binary protocol to be
used within EMSA will be Protocol
Buffers,

 Navigating an object tree can be easier than
equivalent XML

 Message format is well defined

Disadvantages:

 Future / backward compatibility can be more tricky
compared to XML

 Not humanly readable

 No tools for transforming between message formats
or versions

Thrift
Is comparable to Protocol Buffers. The goals and advantages
are very similar. Protocol Buffers are already used in the
IMDatE application, therefore we recommend using only
Protocol Buffers at EMSA as this will improve interoperability
and limit proliferation of similar but different technologies.

Java serialized objects

Advantages:

 Out-of-the-box java feature

Disadvantages:

 No support for exchanging data with other
programming languages

 Dependent on the version and implementation of the
JDK.

 Not possible to maintain backwards compatibility
other than through maintaining a separate
implementation for older versions.

Service versioning
All services shall be versioned. The version shall include both a major and a minor version number.

Optionally and extra number can be added to these 2 obligatory numbers, representing for example

change due to emergency patches or minor bug fixes.

The major number shall be increased every time (and only if) there is a non-backward compatible

change to the service interface, i.e. whenever the service’s clients will require to be modified in

order to still be able to make use of the latest version of the service.

The minor number shall be increased every time there are backwards compatible changes to the

service interface. E.g. this could be the addition of extra methods, changes in responses or requests

that do not necessary impact (all of) the clients.

If used, the optional third versioning number will be increased whenever there is a change in the

service implementation but no change in the service interface. This version number will be used for

internal purposes of the service only and should be completely transparent to any service clients.

For a more detailed explanation of the versioning scheme, please visit:

http://semver.org/spec/v1.0.0.html

Backwards compatibility
All services shall maintain compatibility for at least 1 major version1.

All service owners shall be required to publish and keep up to date the planning for current and

future versions of the service. This information needs to contain at least:

 Summary of the impact of planned changes. Especially any changes to the interface need to

be clearly identified.

 Planned availability dates of the service (version) for each EMSA environment.

 Planned end of life date for the service (version) for each EMSA environment.

When a service is provided by a web server, the URI for the service shall include the major and minor

version of the service as defined above. It shall never include the 3th, optional version number.

ICD Documentation
All services shall have both a human readable and a machine readable (where a technical standard

exists).

SOAP webservices
SOAP webservices shall be defined by a WSDL document. The namespace of the WSDL document

shall be:

 http://schemas.emsa.europa.eu/[ServiceName]/[major-version.minor-version].

Where possible, schema definitions for elements shall be reused between the services provided by

EMSA. The namespace for element definitions shall be:

 http://schemas.emsa.europa.eu/[Entity]/[major-version.minor-version].

All schemas shall be published to a common repository and be publicly accessible at the URL

corresponding to the namespace definition.

JSON webservices
All JSON webservices using XML message shall be defined by a WADL document.

For JSON services using JSON, there currently doesn’t appear to be a commonly used interface

specification. One possibility2 might be WADL in combination with JSON Schema3.

1
 This requirement can only be waived with the explicit agreement of all current or planned users of the

service.
2
 http://kingsfleet.blogspot.pt/2012/11/json-schema-in-wadl.html

3
 http://json-schema.org/

http://semver.org/spec/v1.0.0.html

Service clients
All systems / applications that rely or plan to rely on a service shall register their usage of the service

in the Service Catalogue.

Service owners will exclusively use the Service Catalogue to contact parties that need to be informed

of any changes, problems or planned maintenance activities. It therefor follows that unregistered

clients of the service will not be informed of changes that may impact their application.

