

ICT Architecture

System and Application Technical Landscape

European Maritime Safety Agency System and Application Technical Landscape

1

Table of Contents

Definitions, acronyms and abbreviations.. 2

1. Introduction and objectives .. 4

2. System landscape ... 5

2.1. High level network schema .. 5

2.2. Data links .. 5

2.3. Proxy Policy ... 5

2.4. NETWORK Load balancing .. 6

2.5. High level VIRTUAL INFRASTRUCTURE SCHEMA .. 7

2.6. VIRTUAL INFRASTRUCTURE SERVICES .. 7

2.7. APPLICATION REQUIREMENTS for VIRTUAL INFRASTRUCTURE 8

2.8. Environments ... 9

2.9. Disaster recovery .. 11

3. Application landscape .. 1

3.1. Architecture overview .. 1

3.2. Client Environment and Client Tier .. 2

3.2.1. Web Browser environment .. 2
3.2.2. Client Application ... 2
3.2.3. External Systems ... 3

3.3. APPLICATION Environment .. 3

3.3.1. Application Server .. 3
3.3.2. EIS Tier .. 5

3.4. SECURITY .. 7

3.5. Reporting Platform .. 8

3.6. Geographic Information System ... 8

3.7. Logging ... 8

3.8. Storing times / dates ... 8

4. Service Oriented Architecture ... 10

4.1. Service consumers .. 11

4.2. Shared Service INFRASTRUCTURE .. 11

5. LDAP structure for maritime applications .. 12

5.1. LDAP structure ... 12

6. Software versioning scheme ... 14

7. Summary ... 15

Annex 1 .. 17

European Maritime Safety Agency System and Application Technical Landscape

2

Definitions, acronyms and abbreviations

Definition Description
AJAX Asynchronous JavaScript and XML

BCF Business Continuity Facility

BMP Bean-Managed Persistence

CMP Container-Managed Persistence

DAO Data Transfer Objects

DB Database

DC Data Centre

DHTML Dynamic HTML

DMZ Demilitarized zone

DNS Domain Name System

EIS Enterprise Information System

EJB Enterprise Java Bean

EMSA European Maritime Safety Agency

ESB Enterprise Service Bus

FTP File Transfer Protocol

GIS Geographic Information System

GUI Graphical user interface

HA High Availability

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

IPSEC Internet Protocol Security

ISP Internet Service Provider

JCA JAVA EE Connector Architecture

JDBC Java Database Connectivity

JEE Java Enterprise Edition

JMS Java Message Service

JSF Java Server Faces

JSP Java Server Pages

LDAP Lightweight Directory Access Protocol

Mbps Megabit per second

MOM Message Oriented Middleware

NAT Network Address Translation

OS Operating System

OSB Oracle Service Bus

OWASP Open Web Application Security Project

POJO Plain Old Java Objects

R. Proxy Reverse Proxy

RAC Real Application Clusters

RIA Rich Internet Applications

RMI Remote Method of Invocation

SAN Storage Area Network

SANS SysAdmin, Audit, Network, Security Institute

sFTP Secure File Transfer Protocol

SMTP Simple Mail Transfer Protocol

SRM Site Recovery Manager

SOA Service Oriented Architecture

SSL Secure Socket Layer

TB Tera Bytes (i.e. 1012 bytes or 1 million mega bytes)

UDDI Universal Description Discovery and Integration

European Maritime Safety Agency System and Application Technical Landscape

3

VLAN Virtual Local Area Network

XHTML Extensible Hypertext Markup Language

XWS WS Security implementation from Sun Microsystems

European Maritime Safety Agency System and Application Technical Landscape

4

1. Introduction and objectives

This document describes EMSA System and Application landscape. Its main objective is to

document the technical solutions used by EMSA at System level and to provide directions on

options and preferable technologies to be considered at Application Level.

Although the System and Application Landscape described in this document are EMSA

guiding lines, this does not mean that no deviations are allowed.

Exceptions can be proposed and they will be considered on a case by case basis; if it is

found that is the best technical implementation for the requirement or there is no other way

of doing it, this exception will be accepted.

Also suggestions for innovation are welcome and if they bring added value to the landscape,

they will be included.

The document is organized in several chapters:

 Chapter 1: Introduction and Objectives.

 Chapter 2: Describes the System Landscape and the Technical solutions implements

at systems and network levels.

 Chapter 3: Describes the Application Landscape and preferable options to be used at

the Application level.

 Chapter 4: Describes the conceptual Service Oriented Architecture (SOA) to which

the applications should comply

 Chapter 5: Describes the LDAP structure to be used by all Maritime Applications

 Chapter 6: Describes the software versioning scheme

 Chapter 7: Presents a summary of the system and application landscape

European Maritime Safety Agency System and Application Technical Landscape

5

2. System landscape

2.1. HIGH LEVEL NETWORK SCHEMA

EMSA Primary site

High level network schema

2.2. DATA LINKS

Data Links

• 2 Internet ISP
 - active/active using BGP
 - BGP autonomous system and routing fully managed by EMSA
 - 100 Mbps each
 - 256 Provided independent IP addresses
• 1 sTESTA link
 - EU private network
 - 2 Mbps
• 1 GEANT link
 - Reserved to the CleanSeaNet project for high speed image transfer
 - 1 Gbps

2.3. PROXY POLICY

The following rules should be followed:

 Accessing EMSA web applications should be always through HTTPS.

 Reverse proxies are used for all incoming connections from outside networks (internet

and sTESTA)

 All incoming connections shall pass through our reverse proxies.

European Maritime Safety Agency System and Application Technical Landscape

6

 All incoming SSL connections are terminated in the reverse proxies.

 Proxies are always responsible for the SSL encryption and decryption

 Proxies are always responsible for creation of the SSL connections

 1-way SSL is used for human to system interfaces while 2-way SSL should be used for

system to system interfaces.

 All SSL outgoing connections shall use the proxy. Any outgoing SSL connection shall be

initiated as plain HTTP by the applications to the proxy, where the SSL will be initiated

for the outgoing SSL connection. The protocol used to request the proxy the creation of

an outgoing HTTPS connection, involve the usage of an EMSA URL naming convention

(<standard_URL>.f5 URLs).

Figure 1: Proxy policy

Proxy Devices

• 2 x F5 Big IP 3600

2.4. NETWORK LOAD BALANCING

The two F5 BigIP form a redundant cluster and can perform load balancing for web

applications in any DMZ. The design of any new system or application should preferably

implement load balancing with node fail detection on this equipment.

European Maritime Safety Agency System and Application Technical Landscape

7

2.5. HIGH LEVEL VIRTUAL INFRASTRUCTURE SCHEMA

2.6. VIRTUAL INFRASTRUCTURE SERVICES

The following services are offered to VMs and application environments:

- Basic monitoring with Nagios;

- Performance monitoring with VCenter Operations;

- VM-level backup with Networker or Netapp SnapMgr for Virtual Infrastructure.

Exceptionally also Networker agent-based backup can be implemented.

- Deployment of a VM or environment1;

- Cloning of a VM or environment;

- Snapshotting of a VM or environment2;

- Exporting as OVF a VM or environment;

- Hardware resource allocation changes3;

- Upgrade of VMware tools and virtual hardware;

- Troubleshooting.

1 Subject to being included in the EMSA Template catalogue, currently including:

- Linux Red Hat Enterprise Server v.5 and v.6;
- As above, with Weblogic or with Oracle DBMS;
- latest Microsoft Windows servers.

2 Subject to the following policy: the snapshot must be rolled back, or removed, in one week time to avoid
performance penalties.
3 Subject to the following policy: CPU, Memory, disk and network for any VM should be fit for purpose, and
oversized VMs should be avoided to reduce contention issues and overhead. Granting more resources is subject to
a trend analysis of the use of current resources also looking at Vcenter Operations performance indicators, and
takes into account its recommendation. VMs oversized are reported on a regular basis and are subject to
downsizing.

European Maritime Safety Agency System and Application Technical Landscape

8

2.7. APPLICATION REQUIREMENTS FOR VIRTUAL INFRASTRUCTURE

Applications and systems hosted in the EMSA Virtual Datacenter must respect the following

requirements:

- Base OS must be chosen out of the current EMSA Template catalogue4;

- Compatibility with the latest VMware virtual hardware specifications (currently v.8);

- Hardware provisioning done according to a principle of fit-for-purpose;

- Compatibility with VMotion.

4 See Note 1.

European Maritime Safety Agency System and Application Technical Landscape

9

2.8. ENVIRONMENTS

EMSA has defined 6 possible different types of environments for the Maritime Applications.

The following picture presents an overview of them.

Figure 2: Types of Environments

The following figure shows detailed information related to each type of environment.

European Maritime Safety Agency System and Application Technical Landscape

10

Figure 3: Characteristics per Type of Environments

The basic infrastructure that supports the environments is as follows:

Environments

 Production
 Training: ideally 50% of the production capacity
 Pilot Production: ideally 50% of the production capacity
 Pre-Production: ideally 50% of the production capacity

 Test/Quality: ideally 25% of the production capacity

Server Infrastructure

• EMSA Datacenter is fully virtualised with VMWare technologies
• Those include:
 - VMware ESXi VSphere 5
 - VMware HA, DRS and Failover

High availability technologies

Service fail-over: Weblogic Active-Active, Oracle RAC
Server fail-over: VMware FailOver and VMware HA
Site fail-over: VMWare Site Recovery Manager;

Data replication: Asynchronous data replication via FCIP; backup storing off-
site

Service Clustering

• Weblogic Active/Active clustering
• Oracle RAC

SAN Storage

• Brocade fabric based on Sanswitch DS5300
• EMC Clariion CX4-240
• Netapp filer FAS3240 (only CIFS/NFSv3)

European Maritime Safety Agency System and Application Technical Landscape

11

2.9. DISASTER RECOVERY

EMSA’s Business Continuity Facility (BCF) is hosted in Porto in the premises of a commercial

hosting provider. The BCF is a fully equipped replica of the main site in terms of servers,

network equipment, internet connectivity, storage and middleware, and as such it may

function as either the main production site for an application, or as back-up site. This choice

may be made on a per application basis and depends on the EMSA needs, the application’s

replication design and capabilities, and the desired SL.

Environment Test / Test Pilot Pre-Production Training Pilot Production Production

Purpose This
environment
allows software
contractors to
perform testing
and integration
of their
applications in
the EMSA
environment.

This
environment
offers a chance
for EMSA
application users
to review and
test applications
in development
or having past
SAT.

This
environment is
used to perform
training sessions
with the end-
users and MS
commissioning
tests.

This
environment is
used to
implement new
applications to
validate new
concepts before
implementing a
full-production
system.

Shall only be
provided for
applications
whose deliveries
have been
formally
accepted.

When an
application is no
longer in use,
the application
owner shall
inform unit A.3
of this change in
status.

Infrastructure
performance &
scaling

Equivalent to
25% of
production
capacity

Equivalent to
50% of
production
capacity

Equivalent to
50% of
production
capacity

Equivalent to
50% of
production
capacity

Responsibility
and installation

In test
environment the
contractor will
have the
necessary
privileges
(limited to areas
directly related
to the
development) in
order to be able
deploy the
application
under
development
without help
from A.3 staff.

On request A.3
may make
available staff to
support the
contractor.

The environment
shall also be
used to test
installation
procedures.
Before any
applications are
installed or
before
configuration
changes, data
fixes, etc are
performed, the
contractor will
deliver to EMSA
all source code,
installation

scripts,
installation
procedures,
release notes,
etc, as described
in the release
management
procedure. A.3
will be
responsible for
installation and
therefore the
contractor or
EMSA project
officer will need
to arrange with
A.3, sufficiently
beforehand, a
date for
installation.

In training
environment the
Operational
Units will have
the necessary
privileges
(limited to areas
directly related
to the
development) in
order to be able
deploy the
application
under
development
without help
from A.3 staff.

On request A.3
may make
available staff to
support the
contractor.

In Pilot
Production
environment the
Operational
Units will have
the necessary
privileges
(limited to areas
directly related
to the
development) in
order to be able
deploy the
application
under
development
without help

from A.3 staff.
On request A.3
may make
available staff to
support the
contractor.

All software or
scripts being run
in the
production
environment
shall first be
installed in pre-
production
environment.
Both EMSA
business
responsible and
EMSA IT
responsible shall
have formally
accepted the
software in

accordance with
Software
Release
Management
Procedure.

Installation and
maintenance will
be performed
solely by A.3 or
its contractors.

European Maritime Safety Agency System and Application Technical Landscape

12

Any new system or application must conform by design to one of the business continuity

approaches foreseen so far:

1) ON/OFF model:

The servers and services that constitute the system or application are active and

visible on the network only in the main site. They are kept in sync in the secondary

site with some middleware or low level replica technology like Dataguard for

backends, or virtual machine cloning or storage array based replication for front

ends. But the replicated systems are always inactive on the secondary site in an off-

state and not visible on the network unless the recovery procedure is executed.

Taking over in that case means executing a procedure to stop the systems in the

main site (if possible), execute a last synchronisation (if possible), stop the

synchronisation flows, then restart the replicated systems in the secondary site

changing all the parameters that differ in the two sites like network configuration,

internal DNS entries, pointers to database or cartographic servers or to any other

horizontal service platform always available in both sites like LDAP, Single Sign On,

DNS etc…. Eventually, the external DNS entry should be changed to point external

Internet users to the public IP of the system or application in the new site.

According to this model, it is still possible to have the same internal FQDN for the

application servers in both sites, as servers are active and visible on the network

only in one site at a time, and when taking over, the A records of the internal DNS

can be changed to reflect the different IP address space in the new site.

2) ON/ON model:

The servers and services that constitute the system or application are active and

ready to take over at any time in both sites. Synchronisation rely on the features of

the application or middleware used rather than on a low-level cloning and

transferring of the virtual machines, offering either a fully multi-master active/active

approach like Active Directory, or some type of distributed geo-cluster, or anyway an

autonomous system which keeps data and configuration in sync between the two

legs in the two sites. Taking over in that case is a simpler procedure like activating

some built-in system or application feature to switch to the other site, possibly

requiring some internal and external DNS changes, or can be even fully transparent.

According to this model, different FQDNs and IPs for the application servers in the

two sites must be chosen, as servers are active and visible on the network in both

sites at any time.

Note: it is not accepted to design ON/ON systems where the virtual machines on the two

sides have the same internal DNS FQDN.

The ON/ON model, when supported by the application or middleware, might guarantee

faster and seamless fail-over procedure, hence it is the preferred approach.

The following figure exemplifies how the interconnection of current EMSA’s production

environment with the BCF is envisaged and also points to the use of several

replication/back-up systems at different levels of the infrastructure:

European Maritime Safety Agency System and Application Technical Landscape

13

Figure 4: EMSA DC connection with BCF

The figure presented hereafter depicts the connection between the applications currently deployed at EMSA and the ones thatOracle RAC will be

at BCF:

EMSA

Weblogic Active – Active cluster

EIS Thetis

CSN STCW

LRIT ...

Oracle RAC

EIS DB

schema

Stires DB

schema

Other DB

schema

LRIT DB

CSN DB

schema

Thetis DB

schema

C-Map cluster

Cmap load

balancer

Cmap 1 Cmap n

ARCGis a-a cluster

ARCGis load

balancer

ARCGis

instance 1

ARCGis

nstance n

HP Blade VMs

Physical Servers

HP DL3800

SAN (CX 3)

Older Oracle instances

?

Older Oracle instances

?

Weblogic instance

Weblogic instance

Application not ready

for a-a cluster or

running on older

Weblogic

Other platforms

PHP, Tomcat,

MySQL, ...

HP DL 3800

HP Blade VM

Infrastructure components

OpenLDAP OSB Others...

Runs on

Runs on

Data store

Runs on

Runs on

Runs on

Data store

Runs on

Runs on

BCF

Weblogic Active – Active cluster

EIS Thetis

CSN STCW

LRIT ...

Oracle RAC

Other DB

schema

CSN DB

schema

Thetis DB

schema

LRIT DB
Stires DB

schema

EIS DB

schema

C-Map cluster

Cmap load

balancer

Cmap 1 Cmap n

ARCGis a-a cluster

ARCGis load

balancer

ARCGis

instance 1

ARCGis

nstance n

HP Blade VMs

Physical Servers

HP DL3800

SAN (CX-4)

Older Oracle instances

?

Older Oracle instances

?

Weblogic instance

Weblogic instance

Application not ready

for a-a cluster or

running on older

Weblogic

Other platforms

PHP, Tomcat,

MySQL, ...

HP DL 3800

HP Blade VM

Infrastructure components

OpenLDAP

Runs on

Runs on

Data store

Runs on

Runs on

Runs on

Data store

Runs on

Runs on

Oracle Dataguard

Oracle Dataguard

F5 Big IP

OSB Others...

UI Clients
System-2-sytem clients

Figure 5: Business Continuity Facility

Key elements of the actual BCF architecture are:

1) the two sites are connected through an IPSEC tunnel over an high performance link

2) the two sites use different private and public IP address ranges

3) the internal DNS zone emsa.local, containing server’s FQDN, is shared between the

two sites;

4) the external IP address space in each of the two sites is a different C-class of

Provider Independent IPs whose routing advertisements is managed directly by

EMSA routers

a. 91.231.216.0/24 => Primary site;

b. 91.231.217.0/24 => Secondary site;

5) the external DNS zone “emsa.europa.eu” is unique across the sites, it is delegated to

EMSA, and it is kept in sync between the two sites with master-slave DNS

replication;

6) data and systems are kept in sync through either:

a. Oracle Dataguard for backend;

b. Storage array replication for most of the front end virtual machines;

c. Ad hoc application built-in replication technologies, like active directory

replication, or Microsoft continuous cluster replication for Exchange and SQL..

d. Ad hoc scripts for data transfer/

7) Rerouting of Internet users to the BCF is done with DNS technologies

New applications development should always be BCF friendly by being compliant with the

following requirements:

 Bandwidth required for data and system alignment should be kept to a manageable

amount to allow continuous replication over an non-dedicated medium bandwidth link. A

bandwidth estimation for data synchronization between EMSA DC and BCF, through

Oracle Data Guard and other technologies, shall be provided;

 A fail-over procedure to BCF shall be provided together with one to fail back to EMSA;

 A list of all the application dependencies which need to be resolved in the BCF and main

production site for the application to run shall be provided:

o Web services

o Data sources

o Other application(s)

o Security constraints

o Infrastructural services

o Etc…

 Connections to other machines should always be configured by referring to the machine

name, never by referring to the IP address directly.

1

3. Application landscape

Figure 6: Application landscape

3.1. ARCHITECTURE OVERVIEW

EMSA IT systems should follow state of the art JAVA PLATFORM, ENTERPRISE EDITION

VERSION 6 (JEE) n-tier architecture. Figure 1 represents the preferable EMSA IT

architecture where the major tiers are:

Client Environment

Client Tier:
Client Tier is a JEE application front-end that provides communication with
human users or with others external systems.

For details, refer to chapter3.2

Server Environment

Web Tier:
Web Tier connects user interface on a Client Tier with business logic on a
Business Tier.

For details, refer to chapter 3.3.1, (a)

Business Tier:
Business Tier provides transaction processing logic (business logic) and data
processing logic (data management). Business processes and business
components should not be implemented outside this tier.

For details, refer to chapter 3.3.1, (b)

EIS Tier:
EIS (Enterprise Information System) Tier consists of all enterprise
information systems, such as databases or other information systems.
ESB and Message Oriented Middleware are also included in this tier.

For details, refer to chapter 3.3.2

2

Client Tier is the only tier of the Client Environment and it’s by definition a distributed and

separated tier.

Web Tier, Business Tier and EIS Tier are part of the Server Environment hosted at EMSA;

EIS Tier (and its components) is usually a separated tier implemented on top of a separated

server environment and depending on the complexity, the system architect may decide

between a complete distributed architecture where all tiers are distributed in separated

server environments or a mixed architecture where some tiers may share one server

environment.

Operation systems options for the different environments are:

Client Environment

• Windows 7
• LINUX Redhat desktop V5/6

Server Environment

• LINUX Redhat server V5/6 (32 or 64 bits)
• Windows Server 2008

3.2. CLIENT ENVIRONMENT AND CLIENT TIER

3.2.1. Web Browser environment

The majority of EMSA applications are delivered to the final user via a browser based

interface. A Web UI's advantage is that no additional software needs to be installed on client

side and minimal demands are placed on the client platform.

Because a HTML Thin Client GUI is limited by markup language / JavaScript capabilities,

others resources can add to build Rich Clients providing better user experience through the

Web Browser. Applications must be 100% compatible with, at least, the following browsers

or higher versions:

Web Browsers

• Microsoft Internet Explorer 9 (latest major version)
• Mozilla Firefox 18 (latest major version)

HTML page serves as a host for built Rich Clients with different technologies:

Client Tier Technologies

• HTML 5
• Javascript
• Tag Libraries
• AJAX
• AdobeAir

RIA Frameworks

• Ext JS
• jQuery

Technologies used to implement Rich Internet Applications in the Client Tier can also have

strong relationships with the technologies used in the Web Tier (e.g. Tag Libraries)

described in chapter 3.3.1.

Usage of Java Applets should be limited to very particular situations and the decision to

allow this will be taken on a case by case basis.

3.2.2. Client Application

Due to some business requirements (e.g. operation in disconnected mode, access to the

local file system, …), some applications may require a Fat Client.

3

In order to create a unified technology platform, and to support all operating platforms in

use at EMSA or EMSA clients, preference will be for using the Java language. As an

alternative, EMSA may allow use of Adobe AIR technology.

A mechanism for deploying and updating the client application at the remote PC will be

needed (Java Webstart will be preferred). Dependencies on runtime components not already

part of standard EMSA PC configurations will be regarded as negative.

Because EMSA needs to support other organisations within the Member States, any

application to be installed on a client will need to be cross-platform, covering at least the

platforms listed earlier in this document.

 Usually, a client application will need also to connect to the server side of the system in

order to perform business actions (e.g. data synchronization). Several technologies can be

used to address this client-server connection:

Client-Server connection technologies

• HTTP or HTTPS
• Web Services
• RMI

Communications to servers shall be done using web services, exceptions may be granted on

request. WS-* standards will be the preferred way for securing, and enabling QoS,

reliability, etc. for these web services. Important business data should always be stored on

servers managed by A.3, if this requirement cannot be met (due to business requirements,

impossibility to connect, …) a procedure for providing data back-ups needs to be foreseen.

In case development of a fat client is proposed, this needs to be discussed with A.3 and

agreements on installation requirements, connection technology and data back-up need to

be reached before starting development.

3.2.3. External Systems

External systems will also act as clients to EMSA systems creating the need of integrating

different software systems used by different organizations (business partners). The system

integration helps to automate collaboration processes and improve business performance.

De-facto standard technologies should be used to inter-connect external systems with EMSA

systems:

External systems integration technologies

• Web Services
• sFTP /FTP

3.3. APPLICATION ENVIRONMENT

3.3.1. Application Server

EMSA architecture is based on the standard JEE version 5. The following Application Servers

should be used as the base Web and EJB containers:

Application Servers

• Weblogic Application Server 10.3.6
• JBoss (latest version)

New development or ‘significant’5 changes to existing applications should always target the

latest version of the application server in use at EMSA. For existing applications, EMSA will

assess the desirability vs the risks of upgrading the underlying application server on a case

by case basis.

5 Significant shall be understood as any change resulting in a change of either major or

minor versioning number (see further for a description of the version numbering scheme in

use at EMSA)

4

Simple applications, where distribution is not foreseen, the EJB container is not needed; see

below for details.

(a) Web Tier

The delivery of Rich GUI based on Web Browsers is achieved by a set of components located

in this tier and in close relationship with the Client Tier. Those components may vary

depending on the technical solution adopted and level of complexity required for the Rich

GUI; major technologies are presented in the next table:
Web Tier Technologies

• JSP – Java Server Pages
• JSF – Java Server Faces
• Portlets
• Rich server side components6

Portal technology

• Liferay

Simple applications, that only require a Web Container can use:

Web Container

• Tomcat 6.x
• JBoss Web Container

Web Services are used to provide communication between loosely connected system

components and are the preferable mechanism to expose services to external

systems/applications. Several technologies could be adopted:

Web Services technologies

• AXIS 2
• Spring Web Services

• UDDI
• XWS

Where needed the WS-* family of web service specifications as defined by OASIS will be

preferred for implementing web service reliability, security, etc.

(b) Business Tier

System functionalities are always implemented in the Business Tier and several technical

options can be used to implement the Business components.

A software layer approach must be followed, implementing at least, two layers:

Business Layer: Responsible for the delivery of the business functionalities and

orchestration of the business processes

Data Access Layer: Responsible for isolation of data access and actions executed over the

persistent data storage (typically a relational database). Usually, Data Access Object (DAO)

design pattern is mapped into this layer.

To support data transfer between layers and even between tiers a complete set of objects

according to the Data Transfer Objects design pattern must be implemented.

For simple applications where an EJB container is not required:

Business Layer technologies

• POJO (Plain Old Java Objects)

Data Access Layer technologies

• Hibernate

6 No preferable solution yet. On a case by case, other technologies that enable Rich Web

base clients can be used

5

• iBatis

For systems requiring an EJB container (that will be provided by the selected Application

Server):

Business Layer technologies

• Session EJBs
• Message Driven EJBs
• POJO (Plain Old Java Objects)

Data Access Layer technologies

• Hibernate
• iBatis
• Entity EJBs

3.3.2. EIS Tier

(a) Database

EMSA stores data in relational databases.

Relational Database Management System

• ORACLE 11g

New development or significant upgrades should enable the application to use the latest

RDBMS version in use at EMSA.

(b) Message Oriented Middleware

To provide messaging services for integrated systems or asynchronous operations, EMSA

relies on a Message-Oriented Middleware that increases the interoperability, portability, and

flexibility by isolating the exposes services from the internal implementation and allowing

distribution over multiple platforms (among other advantages).

Asynchronous messaging is the preferred method for exchanging data between internal

applications. JMS will be the preferred manner for consuming and producing messages. The

use of asynchronous message should enable better decoupling between applications

(compared to web services), allow a more up-to-date system state (compared to batch

processing), increased scalability (due to MOM underpinnings) and improved configurability

and oversight of the system integrations (through use of the ESB). Asynchronous

messaging over JMS will also be the preferred method for request/reply messaging

paradigm.

Message Oriented Middleware

• Weblogic Integrator (to be discontinued)

(c) Other Information Systems

Any other Information Systems inside EMSA is considered to be in the EIS tier.

Integration can be done using several techniques; preferable methods of integration are:

Internal systems integration technologies

• JCA – JAVA EE Connector Architecture
• Web Services (like an external system in the Client Tier)

(d) Authentication and Authorization

EMSA applications that require user authentication and authorization should rely on a

directory to store user credentials, roles and access privileges.

User directory technologies

• openLDAP

Although the use of a database schema to cope with these functions is a common practice,

it has several disadvantages and should be avoided.

6

EMSA owns a centralized system for Identity Management that encompasses two different

aspects: SSO for authentication and central user management based on Oracle technology.

For new applications development, developers should focus on:

 Relying on SSO for authentication

 Using JAAS for in-app authorization

 Weblogic App Server needs to be configured accordingly (JAAS + OAM agent)

 Use an RBAC model

 All administration of security principals will be handled through the Oracle Identity

Manager.

The following figure gives an overview of the current Identity Management implementation.

Figure 7: Identity Management high level diagram

7

Figure 8: Identity Management Logical Overview

3.4. SECURITY

The implementation of EMSA applications shall follow and be compliant with the best

practices for secure programming. The following recommendations and standards are

mandatory and must be taken into consideration:

 SANS Institute recommendations for JAVA/JAVA EE Secure Software Programming
(see Annex 1 or http://www.sans-ssi.org/blueprint_files/java_blueprint.pdf)

 OWASP Application Security Verification Standards (with minimum application
security of ‘2A’) (http://www.owasp.org/index.php/ASVS)

All applications shall be assessed against those recommendations and standards.

https://webmail.emsa.europa.eu/exchweb/bin/redir.asp?URL=http://www.sans-ssi.org/blueprint_files/java_blueprint.pdf
https://webmail.emsa.europa.eu/exchweb/bin/redir.asp?URL=http://www.owasp.org/index.php/ASVS

8

3.5. REPORTING PLATFORM

Reporting Platform

• Business Objects
• JasperReports
• Jasper BI

3.6. GEOGRAPHIC INFORMATION SYSTEM

GIS Platform

• ESRI Arc GIS
• Jeppesen C-Map
• GeoServer

Where applicable, the OpenGIS WMS (v1.3.0) and OpenGIS WFS (v1.1.0) standards shall

be used for exchanging geographical data between applications. Additionaly, OpenGIS KML

(v2.2) may be used.

3.7. LOGGING

Log4J shall be the preferred library for generating application logs. All application logs

should use the same log message format, as described below:

<param name="ConversionPattern" value="%d{yyyy-MM-dd/HH:mm:ss.SSS/zzz} %-5p

[%-t] [%l] %x - %m%n" />

Mandatory fields and format:

 %d – date in the specified format

 %-5p - Priority of the logging event.

 %m - application supplied message associated with the logging event.

 %-t - name of the thread that generated the logging event.

 %l - location information of the caller which generated the logging event.

 %x - NDC (nested diagnostic context) associated with the thread that generated the

logging event.

The following conversion patterns should be avoided as much as possible for Production

environments, due to increased processing needs:

 C

 F

 1, L

 M

The logging level should be changeable without requiring a restart of either the application

or the application server. As for all configuration files, the log configuration file must reside

outside of the packaged application.

3.8. STORING TIMES / DATES

All EMSA servers, regardless of their function, shall use NTP to maintain accurate and

aligned system clocks.

In order to prevent mismatches between data stored in different applications, all data shall

in all cases be stored in Coordinated Universal Time (UTC). It is important to note that UTC,

as opposed to local time, does not change with a change of seasons.

9

When a time is displayed to a user, used for triggering workflows or generating reports, it

shall be the responsibility of the application to convert, if so desired, the stored UTC time to

local time for the user. The final decision on if, or how the conversion shall happen, depends

on the business requirements and will be an application decision. It is recommended for the

user to be informed whether UTC time, user local time or source local time is displayed.

10

4. Service Oriented Architecture

EMSA applications should be compliant with the Enterprise Service Oriented Architecture

with the objective of providing business and data services to others applications and being

flexible and agile in order to easily adapt to change in short time.

EMSA Service Oriented Architecture is supported by a state of the art Service Oriented

Infrastructure that follows the architectural best practices of the SOA metamodel.

Figure 9: SOA architecture

The two major components supporting EMSA Service Oriented Architecture are:

EMSA SOA key components

• Liferay Portal, version 5.2 and 6.1
• Oracle SOA Suite 11g (includes OSB 11.1)

The fundamental building block of Service Oriented Architecture is a service. A service is a

component that can be interacted with through well-defined interfaces or message

exchanges. Services must be designed to perform simple, granular functions with limited

knowledge of how messages are passed to or retrieved from and for flexibility, agility,

availability and stability.

EMSA principles of service orientation, which must be followed while designing services,

are:

1. Services are loosely coupled components

2. Services are independent components

3. Services are self-contained

4. Services boundaries are explicit

5. Services are autonomous

11

6. Services share schema and contract

7. Services are independent deployable (logical aggregation can be considered)

Services designed based on these principles are much more likely to be reused within EMSA

growing SOA infrastructure.

4.1. SERVICE CONSUMERS

Service consumers or composite applications are the applications that are developed to

handle business actions or events initiated by business initiators. Business event initiators

are entities that initiate business actions or events (either human users or other systems).

4.2. SHARED SERVICE INFRASTRUCTURE

Shared service infrastructure defines the framework to shared services. It is based on

Validate, Enrich, Transform, Route, and Operate or invokes (VETRO) patterns

Shared services are shared and reusable services that are used in service orchestration

while creating business processes. Examples of shared services types are:

 Presentation services that present the data to the user.

 Business services that represent core business capabilities. Business services can

range from relatively simple to very complex cross-functional, inter-enterprise

business process.

 Data services that are entity services which provide access to enterprise data.

Simple data services have a Validate, Create, Retrieve, Update, and Delete (CRUD)

interface but more complex data services could be responsible for data aggregation

or data synchronization.

12

5. LDAP structure for maritime applications

5.1. LDAP STRUCTURE

The following figure provides an overview of the LDAP structure to be used for the different

Maritime applications:

Dc=emsa,dc=europa,dc=eu

Ou=Users

 organizationalUnit

Ou=groups

 organizationalUnit

Ou=People

 organizationalUnit

Ou=System

 organizationalUnit

Uid=John

Uid=Roger

Uid=sys1

Uid=sys2

Ou=App1

organizationalUnit
Ou=App2

 organizationalUnit

Cn=Role1

 groupOfNames

Cn=Role2

 groupOfNames
Cn=Members

groupOfName

Figure 10 - LDAP structure overview

In this first implementation stage, this LDAP shall provide authentication services for users

and systems and one first level of information to authorization services.

Domain Component

DC=emsa,DC=europa,DC=eu

OU=Users This Organizational Unit will contain all the users
registered to access any of the Maritime Applications.
See also chapter “Authentication service”

 OU=People Human users will belong to this Organization Unit

 OU=System Systems (non-human users) will belong to this
Organization Unit

OU=Groups Information and groups stored below this OU will
provide the first level of information to authorization
services.
See also chapter “Authorization service”

 OU=App1 Organizational Unit for Maritime Application (or system)
called App1.
All users and systems with granted access to App1 are
under this group.

 OU=App2 Organizational Unit for Maritime Application (or system)
called App2.
All users and systems with granted access to App2 are
under this group.

Table 1 - LDAP main elements

Figure 1 shows an example of the schema proposed:

13

Figure 11 - LDAP structure implementation

14

6. Software versioning scheme

All applications being developed for or by EMSA shall use the following versioning scheme:

MajorVersion.MinorVersion.RevisionNumber[.InternalNumber]

 MajorVersion will start 0 and will be increased by 1 every time significant new

functionality is added to the application, or when significant changes to the

implementation and/or organisation of the code have happened.

o When delivery of a new application or a major new version has been

accepted, the MajorVersion number will be increased by 1, other version

numbers will be reset to 0.

o Development of the next major version starts by increasing major version

number by 1 and resetting all other version numbers to 0.

o The above rules mean that all even numbered versions (+0) will be

development releases for major new versions, whilst all odd numbered

versions will be stable, production releases. E.g. if a software with version

number 0.2.65 has been accepted for use in production environment, its

version number will be 1.0.0. Development for the next major release will

start at 2.0.0 and the production accepted release of this will carry a 3.0.0

version.

 MinorVersion will be increased by 1 whenever less important new functionality or

user interface changes are introduced.

 RevisionNumber will be increased by 1 whenever a new application version

containing only bug fixes is delivered for deployment in EMSA pre-production

environment.

 The InternalNumber is an optional element that may be used by the contractor.

15

7. Summary

Area Description Technology SW Version Comment

Application
Server

 Oracle WebLogic 10.3.6 Active / Active Weblogic
clustering is foreseen for
critical applications

Backup SW VMware VM
backup;
Legato Networker

7.6 SP3

HW HP MSL8096 and
Dell PVT Tape
Libraries

N/A

Business
Continuity

HW/SW systems to
guarantee different
degrees of service
availability

Local scale:
VMware HA and
FailOver

Geographial scale:
Asynchronous
data replication
through the
Storage Array;
VMWare Site
Recovery
Manager;

ESXi V 5

Clustering Service fail-over Front-end:
Weblogic
Active/Active
Back-end: Oracle
RAC

10.3.6

11.2.0.3

Database Oracle Enterprise
11g v1.2.0.3

Data Links Internet connectivity 2 Internet circuits
Internet IP
connections

N/A Each link: 100 Mbps, 256
Provided independent IP
addresses

GIS ESRI ArcGIS 10

HW Servers VM hardware VMware Hardware
revision 8
(vSphere 5)

 Only production database is
not virtualised and runs on
blades as well.

VM Host hardware HP Blade and DL
series servers

N/A

Message
Oriented
Middleware

 Oracle WebLogic
Integration

10.2 To be discontinued

ESB and SOA
suite

Business processes
integration

Oracle SOA suite 11g

Monitoring
System

 Nagios N/A

HP BAC SAM with
SiteScope

9.50

Network
Security

Security DMZ Checkpoint blades R75.40 2 nodes clustered configuration
with Mobile Access VPN

Operating
Systems

 Linux and MS
Windows

RedHat
Enterprise
Linux 5/6
Windows
Server 2008

Proxy Security DMZ F5 Big IP 3600
proxies

10.2.0 Clustered configuration with 2
nodes

Reporting
Platform

 Business Objects Enterprise XI
R2

2 CPU Unlimited users

Jasper Reports
Jasper BI

16

SAN Storage Storage Area
Network

Brocade Fabric;
EMC Clariion
Model CX4-240;
Netapp FAS3240

Virtualisation VMWare VSphere 5

17

Annex 1

GSSP (GIAC Secure Software Programmer)
Java/Java EE Implementation Issues

www.sans.org

Task 1: Input Handling - Java programmers must be able to write programs that read input from their interfaces

and properly validate and process these inputs including command line arguments, environment variables, and input

streams. As these sources may ultimately derive from user input or other untrusted sources, Input Handling has

security repercussions.

01.1.1 Input Validation Principles - Java programmers must understand that input cannot be trusted, regardless of

the interface, i.e., HTTP Requests, Applet sockets, serialized streams, configuration files, backend datastores, etc.

Java programmers must understand the white-list approaches and black-list approaches and the tradeoffs between

them.

01.1.2 Input Validation Sources - Java programmers must recognize common sources of input to Java

applications. This enables them to know when to question the trust level of certain data and weigh it to decide if

input validation is warranted.

01.1.3 Input Validation Techniques - Java programmers must understand how to validate common data types

such as String data as well as uncommon input structures. Familiarity with Regular Expressions, doValidate() and

other tools of Java and J2EE to perform input validation are required.

Task 2: Authentication & Session Management - Java application programmers must have a basic

understanding of Java and J2EE authentication APIs as well as a mastery of authentication principles for

local and remote applications. For the purposes of this examination, Session Management is considered the

process of maintaining an end-user’s authenticated identity for an extended period. It is required that Java

programmers understand the threats to common authentication and session management operations in order

to properly protect these operations.
01.2.1 When to Authenticate - Java programmers must understand that authentication is needed not only for end-

users, but also 3rd party services, backend systems, etc.

01.2.2 Authentication Protection - Java programmers are required to know how to use encryption and certificates

to protect various authentication processes. This includes an understanding of strength-of-function, credential

expiration, credential recovery/reset, and re-authentication.

01.2.3 Session Protection. For the protection of session tokens, Java programmers are required to understand the

implications of several topics, including encryption, strength-of-function, lifespan of tokens, and re-issuance.

01.2.4 Rule 4: Authentication Techniques - Java programmers must be familiar with the more common

authentication techniques and APIs available within Java and J2EE technologies. This includes the Java

Authentication and Authorization Services (JAAS), backend credential storage, and various front-end authentication

alternatives such as certificate, forms, and basic authentication. This familiarity assumes the programmer will

understand the threats and tradeoffs for each technique.

01.2.5 Authentication Responsibilities - Java programmers must have a complete understanding of what services

and protections are provided by using common APIs and what is not provided. For example, maximum session

length, re-authentication, and encryption are protections that are not enabled automatically.

Task 3: Access Control (Authorization) - Java application programmers must be able develop applications

that guarantee the confidentiality of user data. These applications must also prevent users from performing

certain functions. Developers must understand that access control must actively be enforced, not ignored or

left to backend systems.
01.3.1 Restricting Access to Resources - Java developers must under-stand the need for a clear and complete

access control policy for system resources: for example, user data objects that should only be accessed by the owner

of the data.

01.3.2 Restricting Access to Functions - Java developers must understand the need to restrict access to functions

such as privileged functions and privileged URIs, etc.

01.3.3 Declarative Access Control - An understanding of the common APIs (and their tradeoffs) that supports

access control according to configuration files.

01.3.4 Programmatic Access Control - Java developers must understand how and when to manually perform

access control checks in their custom code.

01.3.5 JAAS - Java developers must understand how the Java Authentication and Authorization Service can be

used to implement access control.

Task 4: Java Types & JVM Management - Java programmers must understand the security implications of

built-in data types and Java-specific memory management.

18

01.4.1 java.lang.String - Java programmers must have a complete mastery of the String class’s immutability and

how to compare String objects.

01.4.2 Integer and Double Overflows - Java programmers must understand the limitations of Java’s numerical

data types and the resulting security implications.

01.4.3 Garbage Collector - Java programmers must have an understanding of how the Java Garbage Collector

works and the resulting security implications.

01.4.4 ArrayList vs Vector - Java programmers must understand the differences and the resulting security

considerations between the ArrayList and the Vector.

 01.4.5 Class Security - Java programmers should be familiar with accessibility modifiers, the final modifier, class

comparisons, serialization, clone-ability, and inner classes.

01.4.6 Code Privileges - Java Programmers must understand how to manage the privileges of code as well as the

different protection domains. This includes an understanding of the Security Manager and its policy file.

Task 5: Application Faults & Logging - All Java application programmers need to be able to properly handle

application faults.
01.5.1 Exception Handling - Java application developers must understand Java’s try/catch/finally construct to

appropriately handle application and system exceptions. Developers must determine how much information should

be logged when an exception is encountered depending on the nature of the exception.

01.5.2 Logging - Developers must understand the principles behind logging security-relevant events such as login,

logoff, credential changes, etc. Developers should also be familiar with Java’s logging package, java.util.logging.

01.5.3 Configuration of Error Handling - J2EE developers should be familiar with the configuration to return a

default error page for HTTP 404 and 500 errors.

Task 6: Encryption Services - Java programmers must understand when and how to use encryption to

protect sensitive data.
01.6.1 Communications Encryption - Java application developers must be familiar with the Java Secure Sockets

Extension (JSSE) packages as well as how to configure SSL communication for J2EE applications. Developers are

also responsible for knowing which of their application’s external links should be protected with encryption.

01.6.2 Encryption of Data at Rest - Java developers must understand how to store sensitive data in encrypted

format.

Task 7: Concurrency and Threading - Java programmers must understand how to properly structure multi-

threaded programs.
01.7.1 Race Conditions - All Java application developers must understand race conditions and how they affect

system security. This includes avoiding caching security relevant information that can be accessed by multiple

threads.

01.7.2 Singletons & Shared Resources - Java developers must understand how to implement the Singleton pattern

in Java and how to protect other resources that are accessed by multiple threads.

Task 8: Connection Patterns - Java programs must be able to securely interface with other applications.

Developers must be familiar with parameterized queries, output encoding, and fail-safe connection patterns.
01.8.1 Parameterized Queries / PreparedStatements - Java programmers must understand the security risks

introduced by using dynamic queries and how to safely use the PreparedStatement to safely and securely interact

with databases based on user-supplied input.

01.8.2 Output Encoding - Java programmers must understand when and how to use output encoding to display data

to user interfaces, as this is a primary mitigation technique to UI injection attacks, e.g. Cross-site Scripting.

01.8.3 Fail-safe Connection Patterns - Java programmers must properly form connection patterns using Java’s

try/catch/finally to prevent resource leaks. Resource leaks can occur as a result of failures while operating with

connections to external systems.

Task 9: Miscellaneous
01.9.1 Class/Package/Method Access Modifiers - All Java programmers must understand how the Java access

modifiers (public, private, protected) can be used to protect class members and methods.

01.9.2 Class File Protection - Java programmers must understand how JAR sealing is used.

01.9.3 J2EE Filters - J2EE programmers must be familiar with J2EE Filters and how they can be used to implement

many of the tasks listed above.

